4.8 Article

Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29875-4

关键词

-

资金

  1. National Natural Science Foundation of China [11975102]
  2. State Key Laboratory of Pulp and Paper Engineering [2020C01]
  3. Guangdong Pearl River Talent Program [2017GC010281]
  4. City University of Hong Kong [9610425]
  5. ME2 project under National Natural Science Foundation of China [11227902]

向作者/读者索取更多资源

Researchers have synthesized Mo-doped NiFe (oxy)hydroxide to modulate oxygen activity, leading to enhanced electrocatalytic performance for oxygen evolution reaction (OER). The study provides critical insights into the role of lattice oxygen in determining the activity of (oxy)hydroxides and demonstrates tuning oxygen activity as a promising approach for constructing highly active electrocatalysts.
Transition metal oxides or (oxy)hydroxides have been intensively investigated as promising electrocatalysts for energy and environmental applications. Oxygen in the lattice was reported recently to actively participate in surface reactions. Herein, we report a sacrificial template-directed approach to synthesize Mo-doped NiFe (oxy)hydroxide with modulated oxygen activity as an enhanced electrocatalyst towards oxygen evolution reaction (OER). The obtained MoNiFe (oxy)hydroxide displays a high mass activity of 1910 A/g(metal) at the overpotential of 300 mV. The combination of density functional theory calculations and advanced spectroscopy techniques suggests that the Mo dopant upshifts the O 2p band and weakens the metal-oxygen bond of NiFe (oxy)hydroxide, facilitating oxygen vacancy formation and shifting the reaction pathway for OER. Our results provide critical insights into the role of lattice oxygen in determining the activity of (oxy)hydroxides and demonstrate tuning oxygen activity as a promising approach for constructing highly active electrocatalysts. While (oxy)hydroxides are effective oxygen evolution electrocatalysts, the impacts of pre-catalyst properties on catalyst activities are challenging to assess. Here, authors find Mo dopants in Ni-Fe (oxyhydroxides) to promote lattice oxygen participation and to boost oxygen evolution activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据