4.8 Article

Quantum channel correction outperforming direct transmission

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29376-4

关键词

-

资金

  1. ARC Centre of Excellence for Quantum Computation and Communication Technology [CE170100012]
  2. Australian Government Research Training Program Scholarships

向作者/读者索取更多资源

This study demonstrates successful channel correction for long-distance quantum communication, improving the transmission performance of entangled channels without relying on post-processing or post-selection of data.
Long-distance optical quantum channels are necessarily lossy, leading to errors in transmitted quantum information, entanglement degradation and, ultimately, poor protocol performance. Quantum states carrying information in the channel can be probabilistically amplified to compensate for loss, but are destroyed when amplification fails. Quantum correction of the channel itself is therefore required, but break-even performance-where arbitrary states can be better transmitted through a corrected channel than an uncorrected one-has so far remained out of reach. Here we perform distillation by heralded amplification to improve a noisy entanglement channel. We subsequently employ entanglement swapping to demonstrate that arbitrary quantum information transmission is unconditionally improved-i.e., without relying on postselection or post-processing of data-compared to the uncorrected channel. In this way, it represents realization of a genuine quantum relay. Our channel correction for single-mode quantum states will find use in quantum repeater, communication and metrology applications. Quantum channel correction could provide a remedy to unavoidable losses in long-distance quantum communication, but the break-even point has escaped demonstration so far. Here, the authors fill this gap using distillation by heralded amplification, followed by teleportation of entanglement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据