4.8 Article

Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-30042-y

关键词

-

资金

  1. FRISBI [ANR-10-INBS-05-02]
  2. GRAL, a project of the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS [ANR-17-EURE-0003]
  3. French National Research Agency [ANR-15-IDEX-02]
  4. Idex
  5. FRM [FDT202012010629]
  6. European Research Council (ERC) Consolidator grant [726368]
  7. Russian Science Foundation (RSF) [20-64-46027]
  8. European Research Council (ERC) [726368] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Integrated kinetic and structural investigations reveal that the co-chaperonin prefoldin interacts with islet amyloid polypeptide fibrils to inhibit their elongation and secondary nucleation.
Integrated kinetic and structural investigations reveal that the ubiquitous co-chaperonin prefoldin interacts with its coiled-coil helices on the islet amyloid polypeptide fibril surface and fibril ends to inhibit fibril elongation and secondary nucleation. Chaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal prefoldin interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined nuclear magnetic resonance spectroscopy with electron microscopy to establish that the inhibition of fibril formation is mediated by the binding of prefoldin's coiled-coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. Atomic force microscopy demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据