4.8 Article

Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29542-8

关键词

-

资金

  1. American Cancer Society [PF-15-139-01-CCG]
  2. Packard Fellowship [2006-30521]
  3. NIH [R01GM079373, R35GM134842, R01GM064386]

向作者/读者索取更多资源

Tension plays a crucial role in stabilizing kinetochore-microtubule attachments and suppressing the destabilization activity of Aurora B kinase, ensuring accurate chromosome segregation.
Tension stabilizes properly attached microtubules to kinetochores during chromosome segregation, and lack of tension leads to release. Here the authors show that tension directly suppresses Aurora B kinase mediated destabilization of reconstituted kinetochore-microtubule attachments, likely ensuring accurate chromosome segregation. Chromosome segregation requires sister kinetochores to attach microtubules emanating from opposite spindle poles. Proper attachments come under tension and are stabilized, but defective attachments lacking tension are released, giving another chance for correct attachments to form. This error correction process depends on Aurora B kinase, which phosphorylates kinetochores to destabilize their microtubule attachments. However, the mechanism by which Aurora B distinguishes tense versus relaxed kinetochores remains unclear because it is difficult to detect kinase-triggered detachment and to manipulate kinetochore tension in vivo. To address these challenges, we apply an optical trapping-based assay using soluble Aurora B and reconstituted kinetochore-microtubule attachments. Strikingly, the tension on these attachments suppresses their Aurora B-triggered release, suggesting that tension-dependent changes in the conformation of kinetochores can regulate Aurora B activity or its outcome. Our work uncovers the basis for a key mechano-regulatory event that ensures accurate segregation and may inform studies of other mechanically regulated enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据