4.8 Article

Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-30539-6

关键词

-

资金

  1. Samsung Research Funding & Incubation Center of Samsung Electronics [SRFC-IT2101-04]

向作者/读者索取更多资源

The researchers have developed a transistor-free memristor array with good uniformity and high yield to enable artificial neurons and neuromorphic computing. They have demonstrated the reliability, leaky-integrate and fire property, and short-term memory effect of the developed memristor. The results show the potential of memristor-based artificial neurons and neuromorphic computing systems for energy-efficient edge computing devices.
Designing energy efficient, uniform and reliable memristive devices for neuromorphic computing remains a challenge. By leveraging the self-rectifying behavior of gradual oxygen concentration of titanium dioxide, Choi et al. develop a transistor-free 1R cross-bar array with good uniformity and high yield. Neuromorphic computing, a computing paradigm inspired by the human brain, enables energy-efficient and fast artificial neural networks. To process information, neuromorphic computing directly mimics the operation of biological neurons in a human brain. To effectively imitate biological neurons with electrical devices, memristor-based artificial neurons attract attention because of their simple structure, energy efficiency, and excellent scalability. However, memristor's non-reliability issues have been one of the main obstacles for the development of memristor-based artificial neurons and neuromorphic computings. Here, we show a memristor 1R cross-bar array without transistor devices for individual memristor access with low variation, 100% yield, large dynamic range, and fast speed for artificial neuron and neuromorphic computing. Based on the developed memristor, we experimentally demonstrate a memristor-based neuron with leaky-integrate and fire property with excellent reliability. Furthermore, we develop a neuro-memristive computing system based on the short-term memory effect of the developed memristor for efficient processing of sequential data. Our neuro-memristive computing system successfully trains and generates bio-medical sequential data (antimicrobial peptides) while using a small number of training parameters. Our results open up the possibility of memristor-based artificial neurons and neuromorphic computing systems, which are essential for energy-efficient edge computing devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据