4.8 Article

Synthesis of fluorescent organic nano-dots and their application as efficient color conversion layers

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29403-4

关键词

-

资金

  1. BK21 FOUR Program (Department of Information Display) - Ministry of Education (MOE, Korea)
  2. National Research Foundation of Korea [NRF-2019M3D1A2104019]
  3. Technology Innovation Program - Ministry of Trade, Industry & Energy (MOTIE, Korea) [20006464]

向作者/读者索取更多资源

Efficient conversion of light from short wavelengths to longer wavelengths is essential for modern display and lighting technologies. In this study, the authors explore the use of surfactants in the synthesis and processing of organic nanoparticles, demonstrating their outstanding performance and stability.
Efficient conversion of light from short wavelengths to longer wavelengths using color conversion layers (CCLs) underpins the successful operation of numerous contemporary display and lighting technologies. Inorganic quantum dots, based on CdSe or InP, for example, have received much attention in this context, however, suffer from instability and toxic cadmium or phosphine chemistry. Organic nanoparticles (NPs), though less often studied, are capable of very competitive performance, including outstanding stability and water-processability. Surfactants, which are critical in stabilizing many types of nano-structures, have not yet been used extensively in organic NPs. Here we show the utility of surfactants in the synthesis and processing of organic NPs by thoroughly characterizing the effect of ionic and non-ionic surfactants on the properties of fluorescent organic NPs. Using this information, we identify surfactant processing conditions that result in nearly 100 % conversion of organic fluorophores into sub-micrometer particles, or nano-dots, with outstanding performance as CCLs. Such water dispersions are environmentally benign and efficiently convert light. They can be used for a range of fluorophores covering a full spectral gamut, with excellent color purity, including full-width at half-maximum (FWHM) values as low as 21 nm. Compared to inorganic (InP) reference CCLs, the organic nano-dot based CCLs show superior color conversion efficiency and substantially improved long-term stability. Compared to inorganic nanoparticles, organic nanoparticles aren't as well understood. Here the authors explore the use of surfactants to prepare organic semiconductor nanoparticles with outstanding photophysical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据