4.4 Article

Proliferation and apoptosis regulation by G protein-coupled estrogen receptor in glioblastoma C6 cells

期刊

ONCOLOGY LETTERS
卷 24, 期 1, 页码 -

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/ol.2022.13338

关键词

glioblastoma; G protein-coupled estrogen receptor; proliferation; apoptosis; estrogen receptors

类别

向作者/读者索取更多资源

The study found that GPER is expressed in glioblastoma C6 cells and modulates cell proliferation and apoptosis. GPER agonists E2 and G1 promote cell proliferation, while the antagonist G15 reduces cell proliferation and promotes apoptosis.
Glioblastoma is the most frequent primary tumor in the human brain. Glioblastoma cells express aromatase and the classic estrogen receptors ER alpha and ER beta and can produce estrogens that promote tumor growth. The membrane G protein-coupled estrogen receptor (GPER) also plays a significant role in numerous types of cancer; its participation in glioblastoma tumor development is not entirely known. The present study investigated the effect of the agonists [17 beta-estradiol (E2) and G1] and antagonist (G15) of GPER on proliferation and apoptosis of C6 glioblastoma cells. GPER expression was evaluated by immunofluorescence, western blotting and reverse transcription-quantitative PCR. Cell proliferation was determined using Ki67 immunopositivity. Cell viability was examined using the MTT assay and apoptosis using caspase-3 immunostaining and ELISA. C6 cells express GPER, and the immunopositivity increased after exposure to E2, G1, or their combination. GPER protein expression increased after treatment with E2 combined with G1. However, GPER mRNA expression decreased in treated cells compared with control. The percentage of Ki67 immunopositive C6 cells increased under the effect of E2 in combination with G1 or G1 alone. G15 significantly reduced Ki67 immunopositivity. Pearson's correlation analysis revealed a positive relationship between GPER and Ki67 immunopositivity across the study conditions. Additionally, the MTT assay showed a significant reduction in C6 cell viability after G15 treatment, alone or in combination with G1. The exposure to G15 increased the percentage of caspase-3 immunopositivity cells and caspase-3 levels. Pearson's correlation analysis demonstrated a negative correlation between GPER and caspase-3 immunopositivity across the study conditions. Glioblastoma C6 cells express GPER, and this receptor modulates cell proliferation and apoptosis. The GPER agonists E2 and G1 favored cell proliferation; meanwhile, the antagonist G15 reduced cell proliferation, viability and favored apoptosis. Therefore, GPER may be used as a biomarker of glioblastoma and as a target to develop new therapeutic strategies for glioblastoma treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据