4.6 Article

Fusobacterium nucleatum promotes colon cancer progression by changing the mucosal microbiota and colon transcriptome in a mouse model

期刊

WORLD JOURNAL OF GASTROENTEROLOGY
卷 28, 期 18, 页码 1981-1995

出版社

BAISHIDENG PUBLISHING GROUP INC
DOI: 10.3748/wjg.v28.i18.1981

关键词

Fusobacterium nucleatum; Mucosal microbiota; Transcriptome; Colorectal cancer; Inflammation-inducing bacteria

资金

  1. National Natural Science Foundation of China [32070116]
  2. Open Project Program of CAS Key Laboratory of Pathogenic Microbiology and Immunology [CASPMI202102]

向作者/读者索取更多资源

In this study, it was demonstrated that F. nucleatum infection altered the colon mucosal microbiota by enriching pathogens related to the development of CRC, providing new insights into the role of F. nucleatum in the oncogenic microbial environment of the colon.
BACKGROUND Fusobacterium nucleatum (F. nucleatum) has long been known to cause opportunistic infections and has recently been implicated in colorectal cancer (CRC), which has attracted broad attention. However, the mechanism by which it is involved in CRC development is not fully understood. AIM To explore its potential causative role in CRC development, we evaluated the colon pathology, mucosa barrier, colon microbiota and host transcriptome profile after F. nucleatum infection in an azoxymethane/dextran sulfate sodium salt (AOM/DSS) mouse model. METHODS Three groups of mice were compared to reveal the differences, i.e., the control, AOM/DSS-induced CRC and AOM/DSS-FUSO infection groups. RESULTS Both the AOM/DSS and AOM/DSS-FUSO groups exhibited a significantly reduced body weight and increased tumor numbers than the control group, and AOM/DSS mice with F. nucleatum infection showed the highest tumor formation ratio among the three groups. Moreover, the colon pathology was the most serious in the AOM/DSS-FUSO group. We found that the structure of the colon microbiota changed considerably after F. nucleatum infection; striking differences in mucosal microbial population patterns were observed between the AOM/DSS-FUSO and AOM/DSS groups, and inflammation-inducing bacteria were enriched in the mucosal microbiota in the AOM/DSS-FUSO group. By comparing intestinal transcriptomics data from AOM vs AOM/DSS-FUSO mice, we showed that transcriptional activity was strongly affected by dysbiosis of the gut microbiota. The most microbiota-sensitive genes were oncogenes in the intestine, and the cyclic adenosine monophosphate signaling pathway, neuroactive ligand-receptor interaction, PPAR signaling pathway, retinol metabolism, mineral absorption and drug metabolism were highly enriched in the AOM/DSS-FUSO group. Additionally, we showed that microbial dysbiosis driven by F. nucleatum infection enriched eight taxa belonging to Proteobacteria, which correlates with increased expression of oncogenic genes. CONCLUSION Our study demonstrated that F. nucleatum infection altered the colon mucosal microbiota by enriching pathogens related to the development of CRC, providing new insights into the role of F. nucleatum in the oncogenic microbial environment of the colon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据