4.2 Article

Human-Machine Interface Visual Communication Design Model of Electronic Equipment Using Machine Vision Technology

期刊

出版社

WILEY-HINDAWI
DOI: 10.1155/2022/7138674

关键词

-

向作者/读者索取更多资源

This article investigates the optimization of human-computer interaction interface design, and the visual communication index of the interface is significantly improved by utilizing human visual characteristics and applying genetic algorithms.
Electronic equipment has high precision, high reliability, high stability, and high security, as well as the ability to adapt to a variety of challenging environments. With the rapid advancement of mechanization, automation, and electronization, the impact of human factors in production is growing, and designers are increasingly concerned about the problem of man-machine coordination. It is critical to have a man-machine interface that is suitable for operators' thinking and behavior and has a guiding function. The accuracy and timeliness of equipment control are linked to the human-computer interaction interface. The visual characteristics of human cone cells are used to divide the neural visual perception intensity grades. With the visual communication index as the optimization goal, a mathematical model of human-computer interaction interface optimization is established and solved using a genetic algorithm. This method is used to optimize the design of a human-computer interaction interface, and the results show that the visual communication index of the optimized human-computer interaction interface has improved significantly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据