4.2 Article

A Hybrid Convolutional Neural Network and Relief-F Algorithm for Fault Power Line Recognition in Internet of Things-Based Smart Grids

期刊

出版社

WILEY-HINDAWI
DOI: 10.1155/2022/4911553

关键词

-

向作者/读者索取更多资源

This study proposes a hybrid approach combining Convolutional Neural Network and Relief-F algorithm for energy-aware collaborative learning in power line systems. The approach effectively detects faulty power lines and improves energy efficiency in smart grids.
Today, energy management based on the digitalization of smart grids by the Internet of Things (IoT) is an emerging paradigm for power line systems. There are several environmental hazards to break down high-voltage power cables such as lightning, severe voltage fluctuations, and incorrect design of electric field distribution. So, identifying faulty high-voltage power lines is one of the most emerging challenges in smart grids to avoid disruption of the power distribution networks. This paper presents a new hybrid Convolutional Neural Network and Relief-F (CNN-RF) algorithm for an energy-aware collaborative learning approach to detect power line systems in smart grids. This hybrid approach ensures the stability and reliability of the defective power line system and improves the energy efficiency of the smart grids. This approach can detect the defective power line recognition using damaged power line images concerning automatic monitoring using Unmanned Aerial Vehicle (UAV) control system and IoT communications. By applying UAV control system and IoT communications on gathering damaged power line images, human faults and environmental hazards for extra data transmission are avoided. Experimental results show that the proposed CNN-RF model represents a high accuracy rate of 92.2% for recognizing damaged power lines. Also, the precision of damaged line detection ratio is higher than other prediction methods by the rate of 92.5%. Finally, the performance of the damaged line prediction approach in the CNN-RF method has a daily minimum cost in the IoT-based smart grids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据