4.7 Article

Multi-Task Deep Learning of Daily Streamflow and Water Temperature

期刊

WATER RESOURCES RESEARCH
卷 58, 期 4, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2021WR030138

关键词

deep learning; streamflow prediction; water temperature prediction; machine learning

资金

  1. U.S. National Science Foundation [1934721]
  2. USGS awards [G21AC10207, G21AC10564]
  3. Direct For Computer & Info Scie & Enginr
  4. Office of Advanced Cyberinfrastructure (OAC) [1934721] Funding Source: National Science Foundation

向作者/读者索取更多资源

The study explores the benefits of using multi-task deep learning models to predict both streamflow and water temperature, and finds that it can lead to more accurate predictions for certain sites and model configurations.
Deep learning (DL) models can accurately predict many hydrologic variables including streamflow and water temperature; however, these models have typically predicted hydrologic variables independently. This study explored the benefits of modeling two interdependent variables, daily average streamflow and daily average stream water temperature, together using multi-task DL. A multi-task scaling factor controlled the relative contribution of the auxiliary variable's error to the overall loss during training. Our experiments examined the improvement in prediction accuracy of the multi-task approach using paired streamflow and water temperature data from sites across the conterminous United States. Our results showed that for 56 out of 101 sites, the best performing multi-task models performed better overall than the single-task models in terms of Nash-Sutcliffe efficiency for predicting streamflow with single-site models. For 43 sites, the best multi-task, single-site models made no significant difference in predicting streamflow. The multi-task approach had a smaller effect when applied to a model trained with data from 101 sites together, significantly improving performance for only 17 sites. The multi-task scaling factor was consequential in determining to what extent the multi-task approach was beneficial. A naive selection of this factor led to significantly worse-performing models for 3 of 101 sites when predicting streamflow as the primary variable, and 47 of 53 sites when predicting stream temperature as the primary variable. We conclude that a multi-task approach can make more accurate predictions by leveraging information from interdependent hydrologic variables, but only for some sites, variables, and model configurations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据