4.8 Article

Integrated multi-omics analyses reveal the key microbial phylotypes affecting anaerobic digestion performance under ammonia stress

期刊

WATER RESEARCH
卷 213, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118152

关键词

Anaerobic digestion; Ammonia inhibition; Metagenomics; Metaproteomics

资金

  1. National Natural Science Foundation of China [51708057]

向作者/读者索取更多资源

Ammonia inhibition is a common cause of instability in commercial biogas plants. This study used metagenomics and metaproteomics analyses to investigate the sensitivity of different functional bacteria to ammonia stress, their ability to adapt to ammonia stress, and the key phylotypes affecting anaerobic digestion (AD) performance.
Ammonia inhibition is one of the most common causes of instability during the operation of commercial biogas plants. Here, the sensitivity of different functional bacteria to ammonia stress, the ability of functional bacteria to adapt to ammonia stress, and the key phylotypes affecting anaerobic digestion (AD) performance were studied by evaluating the process performance, active microbiome, and protein expression patterns during endogenous ammonia accumulation using integrated metagenomics and metaproteomics analyses. Acetate metabolism was most sensitive to ammonia stress, and the expression activity of methyl-CoM reductase of Methanothrix was inhibited at relatively low ammonia concentrations, which resulted in the accumulation of acetate and other short-chain volatile fatty acids (VFAs) through feedback effects. As the AD process progressed, the abundance of active Methanosarcina with high ammonia tolerance increased, and the activity of their enzymes related to acetoclastic methanation was significantly up-regulated, which resulted in the complete restoration of acetate metabolism and AD performance. Thus, microbial communities can cope with acetate metabolic repression through self-optimization. In contrast, when the total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) increased to 4846.95 mg N/L and 337.46 mg N/L, respectively, propionate (and no other VFAs) accu-mulated in the digester, which was accompanied by a decrease in methane yield by more than 65%. At this time, the abundance of active syntrophic propionate-oxidizing bacteria (SPOB) decreased by 52%, and the expression of key enzymes related to propionate degradation was significantly down-regulated. The proportion of down-regulated differentially expressed proteins in the dominant Pelotomaculum was as high as 94%, indicating the severe suppression of the growth of these functional bacteria as well as their inability to easily acclimate to ammonia stress. Thus, SPOB appeared to be the key microbial phylotypes affecting AD performance under ammonia stress. Ammonia inhibited the methylmalonyl-CoA pathway of Pelotomaculum by inhibiting the expression of succinyl-CoA synthase, which resulted in the suppression of syntrophic propionate oxidation. The results of this study provide new insights into the microbial mechanism of ammonia inhibition and identify the key phylotypes affecting AD performance under ammonia stress. Our findings also shed light on the microbial regulatory targets of nitrogen-rich waste anaerobic digesters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据