4.8 Article

Polyethylene microplastics interfere with the nutrient cycle in water-plant-sediment systems

期刊

WATER RESEARCH
卷 214, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118191

关键词

Biogeochemistry; Ecosystems; Sediment; Metabolism; Plant growth

资金

  1. National Natural Science Foundation of China [52125003, 31900281]
  2. Alliance of International Science Organizations [ANSO CR-KP-2020-05]

向作者/读者索取更多资源

Polyethylene microplastics have significant effects on the morphology, physiology, and stoichiometry of submerged plants, as well as on the nutrient cycle and microbial community in freshwater sediment.
Increasing microplastic (MP) pollution and its effects on aquatic systems have become a global issue; however, the impact of MPs on biogeochemical cycles is poorly understood. A simulation study was performed to analyse the influence of polyethylene (PE) microplastics on the morphological, physiological, and stoichiometric (C, N, P) characteristics of submerged plants, and to investigate their effects on the nutrient cycle and microbial community in freshwater sediment. The results showed that PE-MPs treatments significantly decreased leaf nitrogen and carbon contents. Exposure to 1% PE-MPs suppressed the plant height, total biomass, root activity, and relative growth rate of Vallisneria natans. Decrease in dissolved oxygen (DO) concentrations (19.93-40.26%) were observed in the 1% PE-MPs treatment group compared to that in the control between 1 and 6 days. The activities of enzymes (ammonia monooxygenase and nitrate reductase) related to the nitrogen cycle were significantly altered by the addition of PE-MPs. We found that PE-MPs acted as obstacle disruptors, resulting in a reduction in the release of nitrogen and phosphorus from the sediment to the overlying water. This is because PE-MPs significantly alter the composition and metabolic properties of the microbial communities in sediments, the plant growth, and the nutrient cycle. These findings helped evaluate the impacts of PE-MPs on the water-plant-sediment system and on the biogeochemical cycles of the freshwater ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据