4.8 Article

Kinetic and mechanistic understanding of chlorite oxidation during chlorination: Optimization of ClO2 pre-oxidation for disinfection byproduct control

期刊

WATER RESEARCH
卷 220, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118515

关键词

Chlorine dioxide; Chlorite; Chlorate; Disinfection byproducts; Kinetic modelling

资金

  1. Curtin University (Curtin International postgraduate Research Scholarship)
  2. Curtin Water Quality Research Centre
  3. National Research Foundation of Korea - Ministry of Science, ICT and Future Planning [2019H1D3A1A01070983]
  4. National Research Foundation of Korea [2019H1D3A1A01070983] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The reaction of chlorine with chlorite in drinking water is pH-dependent and influenced by the presence of organic matter. Understanding the kinetics of this reaction can improve water treatment processes and reduce the formation of disinfection byproducts.
Chlorine dioxide (ClO2) applications to drinking water are limited by the formation of chlorite (ClO2-) which is regulated in many countries. However, when ClO2 is used as a pre-oxidant, ClO2- can be oxidized by chlorine during subsequent disinfection. In this study, a kinetic model for the reaction of chlorine with ClO2- was developed to predict the fate of ClO2- during chlorine disinfection. The reaction of ClO2- with chlorine was found to be highly pH-dependent with formation of ClO3- and ClO2 in ultrapure water. In presence of dissolved organic matter (DOM), 60-70% of the ClO2- was transformed to ClO3- during chlorination, while the in situ regenerated ClO2 was quickly consumed by reaction with DOM. The remaining 30-40% of the ClO2- first reacted to ClO2 which then formed chlorine from the DOM-ClO2 reaction. Since only part of the ClO2- was transformed to ClO3-, the sum of the molar concentrations of oxychlorine species (ClO2- + ClO3-) decreased during chlorination. By kinetic modelling, the ClO2- concentration after 24 h of chlorination was accurately predicted in synthetic waters but was largely overestimated in natural waters, possibly due to a ClO2- decay enhanced by high concentrations of chloride and in situ formed bromine from bromide. Understanding the chlorine-ClO2 reaction mechanism and the corresponding kinetics allows to potentially apply higher ClO2 doses during the pre-oxidation step, thus improving disinfection byproduct mitigation while keeping ClO2-, and if required, ClO3- below the regulatory limits. In addition, ClO2 was demonstrated to efficiently degrade haloacetonitrile precursors, either when used as pre-oxidant or when regenerated in situ during chlorination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据