4.8 Article

On the interplay between electromigration and electroosmosis during electrokinetic transport in heterogeneous porous media

期刊

WATER RESEARCH
卷 213, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118161

关键词

Electrokinetic remediation; Electromigration; Electroosmosis; Heterogeneous porous media; Contaminant degradation; Reactive transport modeling

资金

  1. Minerals Research Institute of Western Australia [5044]
  2. Villum Fonden [40682]

向作者/读者索取更多资源

Electrokinetic techniques have great potential for the remediation of contaminated soil and groundwater, but their effectiveness is significantly influenced by physical heterogeneities and pore water chemistry in porous media.
Electrokinetic techniques represent a valuable approach to enhance solute transport, reactant delivery and contaminant degradation in complex environmental matrices, such as contaminated soil and groundwater, and have a great potential for the remediation of many organic and inorganic pollutants. This study investigates the complex interplay between the key electrokinetic transport mechanisms, electromigration and electroosmosis, in physically heterogeneous porous media and its impact on tracer distribution, reactant mixing and degradation efficiency. We perform experiments in a multidimensional setup, considering different types of heterogeneities, injected tracers and reactants, as well as background electrolyte pore water with different chemical composition and pH. We show that EK transport is significantly affected by the physical heterogeneities, due to the interaction between electrokinetic and hydraulic processes, and by the pore water chemistry that plays a key role on the magnitude and spatial distribution of electroosmotic fluxes. The latter affect the overall transport of charged and non-charged species, including the migration velocity of injected plumes, their spatial patterns, spreading and mixing with the background groundwater, and the extent of degradation and the spatio-temporal evolution of reactive zones in the heterogeneous porous media. Processbased numerical modeling allowed us to interpret the experimental observations and to disentangle the coupled effects of physical, chemical and electrostatic processes in the multidimensional, heterogeneous setups. Besides elucidating the mechanisms controlling electrokinetic transport, the results of this study have also important implications for practical field implementation of EK approaches in intrinsically heterogeneous subsurface systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据