4.7 Article

Optimization of a renewable hydrogen production system from food waste: A combination of anaerobic digestion and biogas reforming

期刊

WASTE MANAGEMENT
卷 144, 期 -, 页码 272-284

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2022.03.028

关键词

Hydrogen; Anaerobic digestion; Catalyst; Biogas reforming; Computational fluid dynamics

资金

  1. Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea government (MOTIE) [20214000000090]
  2. National Research Foundation of Korea (NRF) - Ministry of Education (MOE) [2021RIS-003]

向作者/读者索取更多资源

This study optimized hydrogen production using food waste by investigating the effect of agitator types and catalysts. Results showed that the reactor equipped with a hydrofoil agitator produced more hydrogen, and the MgO-promoted Ni-CeZrO2 catalyst demonstrated stable performance in hydrogen production.
In this study, hydrogen production using food waste was optimized by investigating the effect of agitator types in anaerobic digestion reactors and catalysts for biogas reforming. The applied agitators were pitched blade and hydrofoil, and their effect on homogeneity was estimated using computational fluid dynamics. Reactors with different agitators were operated for 60 days for biogas production. Increased biogas production was observed in the reactor equipped with a hydrofoil agitator owing to its high homogeneity. In addition, Ni-CeZrO2 catalysts promoted with La2O3, CaO, or MgO were investigated for stable hydrogen production during the biogas reforming reaction using simulated gas based on biogas from the anaerobic digestion equipped the hydrofoil. Among the promoted catalysts, the MgO-promoted Ni-CeZrO2 catalyst displayed the best results for hydrogen production without significant deactivation. The stable catalytic performance of the MgO-promoted catalyst resulted from the close interaction between Ni and MgO, and its high oxygen storage capacity. Thus, 1216 L hydrogen and 646 L carbon monoxide were produced per kilogram volatile solid via the hydrogen production system that included anaerobic digestion and biogas reforming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据