4.7 Review

Novel applications of ultrasonic atomization in the manufacturing of fine chemicals, pharmaceuticals, and medical devices

期刊

ULTRASONICS SONOCHEMISTRY
卷 86, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ultsonch.2022.105984

关键词

Ultrasonic atomization; Distillation; Ultrasonic misting; Ethanol

资金

  1. United States Department of Energy (US DOE) [DE-EE0007888]

向作者/读者索取更多资源

Liquid atomization is widely used in various industrial applications, and ultrasonic atomization has gained interest as a green and energy-efficient alternative. This review article focuses on the recent advancements in the separation of organic molecules, especially bioethanol, from aqueous solutions using ultrasonic misting. The experimental setups, mist collection methods, droplet size distribution, and separation mechanism are analyzed and compared. The applications of ultrasonic atomization in pharmaceutical and medical device production are also discussed.
Liquid atomization as a fluid disintegration method has been used in many industrial applications such as spray drying, coating, incineration, preparation of emulsions, medical devices, etc. The usage of ultrasonic energy for atomizing liquid is gaining interest as a green and energy-efficient alternative to traditional mechanical atomizers. In the past two decades, efforts have been made to explore new applications of ultrasonic misting for downstream separation of chemicals, e.g., bioethanol, from their aqueous solutions. Downstream separation of a chemical from its aqueous solutions is known to be an energy-intensive process. Conventional distillation is featured by low energy efficiency and inability to separate azeotropic mixtures, and thus novel alternatives, such as ultrasonic separation have been explored to advance the separation technology. Ultrasonic misting has been reported to generate mist and vapor mixture in a gaseous phase that is enriched in solute (e.g., ethanol), under non-thermal, non-equilibrium, and phase change free conditions. This review article takes an in-depth look into the recent advancements in ultrasound-mediated separation of organic molecules, especially bioethanol, from their aqueous solutions. An effort was made to analyze and compare the experimental setups used, mist collection methods, droplet size distribution, and separation mechanism. In addition, the applications of ultrasonic atomization in the production of pharmaceuticals and medical devices are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据