4.7 Article

Multi-class hazmat distribution network design with inventory and superimposed risks

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tre.2022.102693

关键词

Distribution network design; Multi-class hazmat; Risk assessment; Multi-objective optimization; Cyclic dissimilarity-based elitist selection

资金

  1. National Natural Science Foundation of China [72071079, 52072128, 71890972, 71890970]

向作者/读者索取更多资源

This study introduces a new problem of multi-class hazardous materials distribution network design with inventory and superimposed risks and proposes a solution. Applied to a real-world case study in Guangzhou, the results suggest the possibility of upgrading the periodic road closures policy to a full-time prohibition, providing insights to authorities.
Transportation and inventory are essential to hazardous materials logistics, while different classes of hazardous materials are often transported over a network simultaneously. Despite their in transit and storage incompatibility, the superimposed risks among different materials, which results from possible chemical reaction once accidents (e.g., leakage, explosion) happen, further complicate the comprehensive plans. In this study, we introduce a new multi-class hazmat distribution network design problem with inventory and superimposed risks (MHND) in a multi echelon supply chain, where the planning of locations, inventory, and routes are made together. The long-term detour cost/risk and the cyclic time windows penalty costs under the time-dependent (periodic) road closure policy are explicitly formulated. We further propose a new population-based risk definition that evaluates the risk for the population at any location and any time with respect to its multi-class hazmat logistics system. In particular, to capture the interactions between different types of materials, we introduce risk superposition coefficients to capture possible superimposed risks among different hazmat that accommodate a general system with more than two hazmat types. We develop a knowledge-based NSGA-II algorithm with cyclic dissimilarity-based elitist selection (NSGA-II-CD) to solve the problem. The devised cyclic dissimilarity-based elitist selection (CD) operator can tackle the issue of speeding proliferation, which greatly improves the solution quality. Our model is applied to a metropolitan-wide real world case study in Guangzhou, China. The results suggest that, from the perspective of the traffic management sector, the periodic road closures policy in Guangzhou could be possibly upgraded to a full-time prohibition. Moreover, the results provide the following insights to authorities (1) there is a positive convex relation between risk minimization and risk equilibration. The authorities should not try to find a perfect distribution of risk, and they should make a trade-off between the risk equity and total exposed risk; (2) there is a positive correlation between the level of service and total risk. Thus, in practice, the agencies should make a trade-off between economic viability of the system, exposed risk, and maintaining good service for customers; and (3) the interactions between different types of hazmat considerably affect the distribution network design; specifically, the route overlapping ratio for different types of hazmat decreases when their interactions intensify.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据