4.6 Article

Whole-Exome Sequencing in Congenital Hypothyroidism Due to Thyroid Dysgenesis

期刊

THYROID
卷 32, 期 5, 页码 486-495

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/thy.2021.0597

关键词

athyreosis; birth defects; nonsyndromic congenital hypothyroidism; thyroid dysgenesis; thyroid ectopy

向作者/读者索取更多资源

No new predisposing genes were found in NS-CHTD through unbiased analysis of WES data. However, the discovery rate of rare pathogenic or likely pathogenic variants was 42%. Some cases carried multiple variants in genes associated with TD or dyshormonogenesis, but these variants did not explain the variability of hypothyroidism in dysgenesis. Therefore, the etiology of NS-CHTD is complex and further studies are needed.
Context: Congenital hypothyroidism due to thyroid dysgenesis (CHTD) is a predominantly sporadic and nonsyndromic (NS) condition of unknown etiology. NS-CHTD shows a 40-fold increase in relative risk among first-degree relatives (1 in 100 compared with a birth prevalence of 1 in 4000 in the general population), but a discordance rate between monozygotic (MZ) twins of 92%. This suggests a two-hit mechanism, combining a genetic predisposition (incomplete penetrance of inherited variants) with postzygotic events (accounting for MZ twin discordance).Objective: To evaluate whether whole-exome sequencing (WES) allows to identify new predisposing genes in NS-CHTD.Methods: We performed a case-control study by comparing the whole exome of 36 nonconsanguineous cases of NS-CHTD (33 with lingual thyroid ectopy and 3 with athyreosis, based on technetium pertechnetate scintigraphy at diagnosis) with that of 301 unaffected controls to assess for enrichment in rare protein-altering variants. We performed an unbiased approach using a gene-based burden with a false discovery rate correction. Moreover, we identified all rare pathogenic and likely pathogenic variants, based on in silico prediction tools, in 27 genes previously associated with congenital hypothyroidism (CH) (thyroid dysgenesis [TD] and dyshormonogenesis).Results: After correction for multiple testing, no enrichment in rare protein-altering variants was observed in NS-CHTD. Pathogenic or likely pathogenic variants (21 variants in 12 CH genes) were identified in 42% of cases. Eight percent of cases had variants in more than one gene (oligogenic group); these were not more severely affected than monogenic cases. Moreover, cases with protein-altering variants in dyshormonogenesis-related genes were not more severely affected than those without.Conclusions: No new predisposing genes were identified following an unbiased analysis of WES data in a well-characterized NS-CHTD cohort. Nonetheless, the discovery rate of rare pathogenic or likely pathogenic variants was 42%. Eight percent of the cases harbored multiple variants in genes associated with TD or dyshormonogenesis, but these variants did not explain the variability of hypothyroidism observed in dysgenesis. WES did not identify a genetic cause in NS-CHTD cases, confirming the complex etiology of this disease. Additional studies in larger cohorts and/or novel discovery approaches are required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据