4.7 Article

Design and fabrication of an integrated 3D dynamic multicellular liver-on-a-chip and its application in hepatotoxicity screening

期刊

TALANTA
卷 241, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2022.123262

关键词

Liver-on-a-chip; Microfluidics; Hepatocyte spheroids; Cell co-culture; Hepatotoxicity

资金

  1. National Key Research and Development Project of China [2017YFC1700800]
  2. Macau Science and Technology Development Fund (FDCT) of Macau, China [129/2017/A3]

向作者/读者索取更多资源

A three-dimensional dynamic multi-cellular liver-on-a-chip device was developed to mimic the microenvironment of in vivo liver tissue, showing improved liver function and drug toxicity detection capabilities compared to traditional static cultures, by co-culturing hepatocytes and endothelial cells in the chip.
Nowadays, major methods of in vitro hepatotoxicity research are still based on traditional static two-or threedimensional cell culture, although these means could investigate some toxic chemicals induced hepatotoxicity, but most of these toxicities failed to reappear in human, at least not in similar or calculable dose level. These failures may cause by the monoculture of only hepatocytes, ignored the signal communication to other non parenchymal cells in liver tissue, also other complex microenvironment such as endothelial barrier, shear stress and other factors which were really existed in vivo but absent here, final leading to a low reliability of experimental results. In this study, a three-dimensional dynamic multi-cellular liver-on-a-chip device (3DDMLoC) was developed to reproduce the microenvironment of in vivo liver tissue, including the simulation of hepatic sinusoid, perisinusoidal space and continuous liquid perfusion, hepatocytes could gather to some 3D cell spheroids in this chip. The perfusion could bring a real-time exchange of chemicals, nutrients, metabolites, supply suitable oxygen and a weak shear stress. The pressure and oxygen distribution inner the chip were simulated and evaluated by COMSOL Multiphysics software. HepaRG were co-cultured with HUVEC for 7 days in this chip, expression of hepatic polarization protein ZO-1 and MRP2, liver function factors ALB, UREA and CYP450s were almost all higher than in traditional static culture. Several drugs and heavy metal ions induced hepatotoxicity were then investigated, LDH released from hepatocyte spheroids in mostly 3D-DMLoC groups were higher than same-dosed 2D group, indicated the spheroids were more sensibility to the toxins. The hepatoxicity might be induced by acute hepatocytes injury according to the ratios of secreted AST/ALT contents. In conclusion, a liver-on-a-chip device was successfully developed and verified for better reproducing the in vivo physiological microenvironment of liver. It could be applied for easily, efficiently, and accurately screening the potential hepatotoxic chemicals in future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据