4.6 Article

A Genomic Perspective on the Evolutionary Diversification of Turtles

期刊

SYSTEMATIC BIOLOGY
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/sysbio/syac019

关键词

-

资金

  1. National Science Foundation [1812291]
  2. School of Informatics, Computing, and Cyber Systems at Northern Arizona University

向作者/读者索取更多资源

This study examines the phylogenetic heterogeneity in turtle evolution and finds that the discordance between gene trees and species trees may be driven by population-level processes such as incomplete lineage sorting. The study emphasizes the importance of sampling a large portion of the genome in phylogenomic studies to obtain accurate phylogenies for conservation prioritization in turtles.
To examine phylogenetic heterogeneity in turtle evolution, we collected thousands of high-confidence single-copy orthologs from 19 genome assemblies representative of extant turtle diversity and estimated a phylogeny with multispecies coalescent and concatenated partitioned methods. We also collected next-generation sequences from 26 turtle species and assembled millions of biallelic markers to reconstruct phylogenies based on annotated regions from the western painted turtle (Chrysemys picta bellii) genome (coding regions, introns, untranslated regions, intergenic, and others). We then measured gene tree-species tree discordance, as well as gene and site heterogeneity at each node in the inferred trees, and tested for temporal patterns in phylogenomic conflict across turtle evolution. We found strong and consistent support for all bifurcations in the inferred turtle species phylogenies. However, a number of genes, sites, and genomic features supported alternate relationships between turtle taxa. Our results suggest that gene tree-species tree discordance in these data sets is likely driven by population-level processes such as incomplete lineage sorting. We found very little effect of substitutional saturation on species tree topologies, and no clear phylogenetic patterns in codon usage bias and compositional heterogeneity. There was no correlation between gene and site concordance, node age, and DNA substitution rate across most annotated genomic regions. Our study demonstrates that heterogeneity is to be expected even in well-resolved clades such as turtles, and that future phylogenomic studies should aim to sample as much of the genome as possible in order to obtain accurate phylogenies for assessing conservation priorities in turtles. [Discordance; genomes; phylogeny; turtles.]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据