4.7 Article

Improvement of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol-gel nanocomposite coating

期刊

SURFACE & COATINGS TECHNOLOGY
卷 434, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2022.128168

关键词

Plasma electrolytic oxidation; Sol-gel coating; AA2024; EIS; Clay

资金

  1. UMONS (University of Mons)

向作者/读者索取更多资源

Adding montmorillonite nanoparticles into the silane coating has a significant impact on improving the corrosion resistance of AA2024. The montmorillonite nanoparticles enhance the barrier performance and improve the grafting effect of the coating through chemical interaction with the silane layer.
Due to the intrinsic porosity of the layers formed by the plasma electrolytic oxidation (PEO) process, the application of silane-based coatings as an eco-friendly layer is a promising way to diminish penetration of the corrosive species into the PEO coating by pores sealing. In this study, to enhance the corrosion protection of AA2024, the performance of the duplex system achieved by adding different concentrations in sodium mont-morillonite (Na-MMT) dispersed into the silane coating was assessed. In this study, a hybrid sol-gel layer (30% V/V) obtained from tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) sol-gel solution was applied on AA2024 previously covered by an optimized PEO layer using a solution containing sodium silicate and potassium hydroxide solution as electrolyte. Electrochemical impedance spectroscopy (EIS) revealed the significant impact of the sol-gel/clay nanocomposite layer on the corrosion protection performance of the PEO layer on the AA2024 substrate in a 0.1 M NaCl solution. Regarding, the low-frequency impedance of different coating systems upon five weeks exposure to the aggressive solution reported the sealing ability of the sol-gel coatings in which the silane coating modified with 1000 ppm of clay nanoparticles had the maximum corrosion resistance among them (i.e., higher than 10(7) after 5 weeks immersion). The flake-like structure of sodium montmorillonite not only enhanced the barrier performance, but also FT-IR outcomes reflected the reticulation of the silane network through the interaction of nanoparticles with SiOH groups of the silane layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据