4.7 Article

Non-parametric empirical machine learning for short-term and long-term structural health monitoring

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/14759217211069842

关键词

Structural health monitoring; non-parametric anomaly detection; empirical machine learning; environmental variability; bridges

向作者/读者索取更多资源

This article proposes a novel non-parametric anomaly detection method for early damage detection in structural health monitoring. It uses machine learning concepts and the theory of empirical machine learning to define a new damage index for decision-making. The method is validated and compared with other anomaly detection techniques using dynamic and statistical features of two full-scale bridges.
Early damage detection is an initial step of structural health monitoring. Thanks to recent advances in sensing technology, the application of data-driven methods based on the concept of machine learning has significantly increased among civil engineers and researchers. On this basis, this article proposes a novel non-parametric anomaly detection method in an unsupervised learning manner via the theory of empirical machine learning. The main objective of this method is to define a new damage index by using some empirical measure and the concept of minimum distance value. For this reason, an empirical local density is initially computed for each feature and then multiplied by the minimum distance of that feature to derive a new damage index for decision-making. The minimum distance is obtained by calculating the distances between each feature and training samples and finding the minimum quantity. The major contributions of this research contain developing a novel non-parametric algorithm for decision-making under high-dimensional and low-dimensional features and proposing a new damage index. To detect early damage, a threshold boundary is computed by using the extreme value theory, generalized Pareto distribution, and peak-over-threshold approach. Dynamic and statistical features of two full-scale bridges are used to verify the effectiveness and reliability of the proposed non-parametric anomaly detection. In order to further demonstrate its accuracy and proper performance, it is compared with some classical and recently published anomaly detection techniques. Results show that the proposed non-parametric method can effectively discriminate a damaged state from its undamaged condition with high damage detectability and inconsiderable false positive and false negative errors. This method also outperforms the anomaly detection techniques considered in the comparative studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据