4.6 Article

Device study and optimisation of CZTS/ZnS based solar cell with CuI hole transport layer for different conduction band offset

期刊

SOLAR ENERGY
卷 237, 期 -, 页码 414-431

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2022.03.036

关键词

Semiconductor; Heterojunction; Solar cell; SCAPS-1D; Conduction band offset; Hole transport layer

资金

  1. University of Gent, Belgium

向作者/读者索取更多资源

This study simulated and optimized various factors in CZTS solar cells, including layer thickness, defects, and front contact transmission profile. The introduction of CuI as a hole transport layer was found to have advantages, and a high acceptor type defect density in CZTS was found to increase the open-circuit voltage. The finally optimized cell achieved a power conversion efficiency of 15.53%.
The copper zinc tin sulphide (CZTS) is a promising candidate for solar cell application. The CZTS/ZnS-based heterojunction provides a high conduction band offset at the junction. The three types of conduction band offset (spike, flat, and cliff) are discussed in the study, and the comparison of cell output variation is also discussed. In this simulation-based study, we have performed optimisation of the device for layer thickness, carrier mobility, defects, front contact transmission profile, and both the series and shunt resistance. A high acceptor type defect density in CZTS increases open-circuit voltage by shifting the Fermi level towards the valance band maximum. The introduction of CuI as a hole transport layer (HTL) offers a low Schottky barrier and delivers high efficiency compared to the same without the CuI layer, while a higher CuI thickness produce a barrier to back reflection. The finally optimised cell gives the highest power conversion efficiency of 15.53% for a spike like conduction band offset of 0.06 eV. This simulation paves a way to fabricate realistic CZTS solar cells based on the present cell model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据