4.7 Article

Functional N-cycle genes in soil and N2O emissions in tropical grass-maize intercropping systems

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 169, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2022.108655

关键词

Zea mays L.; Biological nitrification inhibition; Urochloa; Megathyrsus; N fertilization; qPCR

资金

  1. FAPESP-Sao Paulo Research Foundation [2015/50305-8]
  2. FAPEG-Goias Research Foundation [2015-10267001479]
  3. FAPEMA-Maranhao Research Foundation [RCUK02771/16]
  4. Biotechnology and Biological Sciences Research Council under the Newton Fund scheme [BB/N013201/1]
  5. FAPESP [2016/25253-7, 2017/02517-1]
  6. CAPES-Coordination for the Improvement of Higher Education Personnel
  7. CNPq-National Council for Scientific and Technological Development [311008/2016-0, 309134/2020-0]

向作者/读者索取更多资源

This study reveals the strong dominance of AOB under ammonium supply, potentially stimulating N2O emissions in maize-forage grass intercropping systems.
There is evidence that forage grasses such as Megathyrsus and Urochloa can suppress nitrification, with direct or indirect consequences on soil inorganic N dynamics and nitrous oxide (N2O) emissions. However, the influence of soil chemical properties on the dynamics of functional N-genes and losses of N in maize (Zea mays L.) inter cropped with forage grasses under N fertilization is poorly understood. In this study, soil samples and N2O emissions were analyzed from a field experiment in which maize (fertilized or not with ammonium-based fertilizer) was intercropped with Guinea grass (M. maximus cv. Tanzania), palisade grass (U. brizantha cv. Marandu), and ruzigrass (U. ruziziensis cv. Comum). Soil N-cycle microorganisms [16S rRNA of bacteria and archaea, nifH (gene encoding N2-fixing bacteria), ammonia-oxidizing bacteria (AOB) and archaea (AOA), nirS (encoding nitrite reductase), and nosZ (encoding nitrous oxide reductase)] were influenced by forage grass, N fertilization, and sampling time, but no evidence of biological nitrification inhibition was found. Palisade grass was associated with a higher abundance of nifH (7.0 x 105 gene copies g-1 soil, on average) in the absence of N compared with the other grasses (4.3 x 105 gene copies g-1 soil, on average). Nitrogen fertilization increased the abundance of AOB but not AOA. Furthermore, N2O flux was influenced by AOB, water-filled pore space, and N fertilization, whereas the cumulative N2O emission and fertilizer-induced emission factor (0.36%, on average) were not affected by the grasses. In conclusion, this study reveals the strong dominance of AOB under ammonium supply, potentially stimulating N2O emissions in maize-forage grass intercropping systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据