4.8 Article

Balancing Electrolyte Donicity and Cathode Adsorption Capacity for High-Performance Li-S Batteries

期刊

SMALL
卷 18, 期 23, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202201416

关键词

density functional theory calculations; high donicity electorolytes; lithium polysulfide adsorption; lithium sulfide growth; lithium sulfur batteries

资金

  1. Samsung Research Funding & Incubation Center of Samsung Electronics [SRFC-MA2001-05]

向作者/读者索取更多资源

Researchers have found that selecting oxides with weaker adsorption capacity as cathode materials in high-donicity electrolytes can achieve high-performance lithium-sulfur batteries.
Li-S batteries with high theoretical capacity are attracting attention as next-generation energy storage systems. Much effort has been devoted to the introduction of cathode materials with strong adsorption to sulfide species, but it is presented that this selection should be refined in the application of high donicity electrolytes. The oxides with different adsorption capacities are explored while controlling the electrolyte donicity, confirming the trade-off effect between the donicity and the adsorption capacity for sulfur conversion. Specifically, a cathode substrate containing oxide nanoparticles of MgO, NiO, Fe2O3, Co3O4, and V2O5 is prepared with spectra in adsorption capacity as well as low and high donicity electrolytes by controlling the concentration of LiNO3 salt. Strong adsorbent oxides such as Co3O4 and V2O5 cause competitive adsorption of electrolyte salts in high donicity electrolytes, resulting in poor cell performance. High cell performance is achieved on weakly adsorbing oxides of MgO or NiO with high donicity electrolytes; the MgO-containing cathode cell delivers a high discharge capacity of 1394 mAh g(-1) at 0.2 C. It is believed that understanding the interactions between electrolytes and adsorbent substrates will be the cornerstone of high-performance Li-S batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据