4.8 Article

Advanced Buffering Acidic Aqueous Electrolytes for Ultra-Long Life Aqueous Zinc-Ion Batteries

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

A New Insight into Ultrastable Zn Metal Batteries Enabled by In Situ Built Multifunctional Metallic Interphase

Kefeng Ouyang et al.

Summary: A strategy to build an indium metal interphase on the zinc anode surface is proposed, preventing hydrogen evolution reaction and zinc corrosion, guiding smooth zinc deposition. This approach achieves ultrahigh cumulative capacities and stable plating/stripping behavior, with encouraging rate performance and cyclic stability for Zn-V2O5 batteries.

ADVANCED FUNCTIONAL MATERIALS (2022)

Review Chemistry, Multidisciplinary

Recent Advances in Electrolytes for Beyond Aqueous Zinc-Ion Batteries

Yanqun Lv et al.

Summary: This review presents the recent development of beyond aqueous electrolytes for Zn-ion batteries, including various types of electrolytes and the critical issues and corresponding strategies for designing beyond aqueous electrolytes.

ADVANCED MATERIALS (2022)

Article Chemistry, Physical

A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode

Rui Yao et al.

Summary: This study introduces a dual-function electrolyte additive to address severe side reactions over zinc metal anodes in aqueous zinc metal batteries, resulting in stable cycling for over 2145 hours. The strategy also enhances the reversibility of energy storage devices based on manganese dioxide and activated carbon.

ADVANCED ENERGY MATERIALS (2022)

Article Materials Science, Multidisciplinary

Enabling high-energy-density aqueous batteries with bond-anchored electrolytes

Yu Wang et al.

Summary: In this study, a hydrogen bond-anchored electrolyte is developed to limit water activity and expand the voltage window. The designed electrolyte suppresses the hydrogen evolution reaction and achieves stable performance in high-voltage aqueous batteries.

MATTER (2022)

Article Multidisciplinary Sciences

A rechargeable zinc-air battery based on zinc peroxide chemistry

Wei Sun et al.

Summary: The study presents a zinc-O-2/zinc peroxide chemistry that operates through a 2e(-)/O-2 process in nonalkaline aqueous electrolytes, allowing highly reversible redox reactions in zinc-air batteries. This innovative ZnO2 chemistry, enabled by water-poor and zinc ion (Zn2+)-rich inner Helmholtz layer, shows superior reversibility and stability compared to alkaline zinc-air batteries.

SCIENCE (2021)

Article Chemistry, Physical

Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery

Cheng Liu et al.

Summary: The study introduces an electrochemical-inert liquid gallium-indium alloy coating for zinc anodes in rechargeable metal batteries, addressing interfacial issues such as dendrite growth and electrode corrosion. The unique coating promotes inward deposition of zinc during charging, improving corrosion resistance and enabling a lower polarization. This effective approach shows promising results in terms of extended lifespan and improved capacity retention in full cells, indicating potential for future development of rechargeable metal batteries beyond zinc-storage systems.

ACS ENERGY LETTERS (2021)

Article Materials Science, Multidisciplinary

A novel electrolyte study on polyaniline aqueous zinc-ion battery

Jiajun Han et al.

Summary: The study prepared a conductive polymer polyaniline as the cathode material for aqueous rechargeable zinc-ion batteries using a cost-effective chemical synthesis method. By adding gelatin as a zinc dendrite inhibitor and acetic acid/sodium acetate as a buffer solution, the performance of the PANI/ZIBs was improved, achieving a high capacity and cycle life with an average coulombic efficiency exceeding 98%.

MATERIALS LETTERS (2021)

Article Chemistry, Multidisciplinary

Stable Aqueous Anode-Free Zinc Batteries Enabled by Interfacial Engineering

Yongling An et al.

Summary: Anode-free zinc batteries (AFZBs) have great potential as energy storage systems due to their high energy density, inherent safety, low cost, and simplified fabrication process. However, rapid capacity fading caused by side reactions hinders their practical applications. Aqueous AFZBs enabled by electrolyte engineering with a stable interphase are designed to address these issues. Introducing a multifunctional zinc fluoride (ZnF2) additive into the electrolyte helps to form a stable F-rich interfacial layer, improving cycling performance and longevity of AFZBs.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries

Dan Li et al.

Summary: A low-concentration aqueous Zn(OTF)(2)-Zn(NO3)(2) electrolyte was designed to form a robust inorganic ZnF2-Zn-5(CO3)(2)(OH)(6)-organic bilayer SEI, allowing high Coulombic efficiency and energy density. The study achieved a high CE of 99.8% for 200 h in Ti parallel to Zn cells, and a high energy density of 168 Wh kg(-1) with 96.5% retention for 700 cycles in Zn parallel to MnO2 cells with a low Zn/MnO2 capacity ratio of 2:1.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Nanoscience & Nanotechnology

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Longsheng Cao et al.

Summary: The study introduces an aqueous zinc battery with a solid-electrolyte interphase that enables excellent performance in various tests, demonstrating its potential for practical applications in energy storage.

NATURE NANOTECHNOLOGY (2021)

Article Chemistry, Physical

A Chemically Self-Charging Flexible Solid-State Zinc-Ion Battery Based on VO2 Cathode and Polyacrylamide-Chitin Nanofiber Hydrogel Electrolyte

Chaozheng Liu et al.

Summary: The study introduces a chemically self-charging flexible solid-state zinc ion battery with high power density and energy density. Utilizing a VO2 cathode and PAM-ChNF electrolyte, the battery achieves self-charging through a redox reaction at ambient conditions. It offers superior electrochemical performance and self-rechargeability.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Physical

Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries

Vivek Verma et al.

Summary: Rechargeable zinc-ion batteries using aqueous electrolytes offer high safety, low cost, and fast charge/discharge rates, but also lead to undesired reactions that result in capacity fade and limited operational lifetimes.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc-Ion Batteries

Sailin Liu et al.

Summary: By tuning the solvation structure of the electrolyte and using fire-retardant triethyl phosphate as a cosolvent, the challenges of cathode dissolution, water reactivity, and zinc dendrites in aqueous zinc-ion batteries have been successfully addressed. The optimized electrolyte structure leads to high average Coulombic efficiency in Zn/Cu cells and enables over 1000 cycles at high current density.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make High-Performance Zn-Ion Batteries

Yiding Jiao et al.

Summary: A new ion-selective polymer glue coated on the zinc anode allows for rapid zinc ion migration and uniform electrodeposition, resulting in a record-high zinc utilization of 90% for 1000 hours. When paired with a vanadium-based cathode, the zinc-ion battery exhibits an ultrahigh device-scale energy density of 228 Wh kg(-1), comparable to commercial lithium-ion batteries.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes

Longsheng Cao et al.

Summary: By using a eutectic electrolyte with tin chloride additive, a zincophilic/zincophobic Sn/Zn-5(OH)(8)Cl-2•H2O bilayer interphase is formed, overcoming the challenges of Zn dendritic growth and poor low-temperature performance in aqueous Zn batteries. The eutectic electrolyte enables high Coulombic efficiency and steady charge/discharge performance at low temperatures, showing great potential for practical applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Tailoring the Stability and Kinetics of Zn Anodes through Trace Organic Polymer Additives in Dilute Aqueous Electrolyte

Mengdie Yan et al.

Summary: This study demonstrates the improvement of zinc anodes in low-cost aqueous electrolytes by adding polymers of different polarities, resulting in over 1300 hours of operation time and high Coulombic efficiency under 2 mA/cm², 2 mAh/cm² conditions.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Hydrophobic Organic-Electrolyte-Protected Zinc Anodes for Aqueous Zinc Batteries

Longsheng Cao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes

Yan Jin et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Refined Force Field for Liquid Sulfolane with Particular Emphasis to Its Transport Characteristics

Srimayee Mukherji et al.

ACS OMEGA (2020)

Article Chemistry, Multidisciplinary

Solvation Structure Design for Aqueous Zn Metal Batteries

Longsheng Cao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Materials Science, Multidisciplinary

Critical Factors Dictating Reversibility of the Zinc Metal Anode

Lin Ma et al.

ENERGY & ENVIRONMENTAL MATERIALS (2020)

Review Chemistry, Multidisciplinary

Materials chemistry for rechargeable zinc-ion batteries

Ning Zhang et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Multidisciplinary

Aqueous zinc ion batteries: focus on zinc metal anodes

Jaeho Shin et al.

CHEMICAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes

Xuesong Xie et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive

Qi Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Physical

Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries

Brian D. Adams et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Article Chemistry, Physical

GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation

Berk Hess et al.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2008)

Article Chemistry, Physical

Molecular force field for ionic liquids composed of triflate or bistriflylimide anions

JNC Lopes et al.

JOURNAL OF PHYSICAL CHEMISTRY B (2004)