4.6 Article

Concise Historic Overview of Strain Sensors Used in the Monitoring of Civil Structures: The First One Hundred Years

期刊

SENSORS
卷 22, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/s22062397

关键词

strain sensors overview; strain-based structural health monitoring; strain gauge; vibrating wire sensors; fiber optic sensors; discrete and 1D distributed sensing; 2D and 3D sensing; sensing paints; skins; sheets; and surfaces

向作者/读者索取更多资源

Strain plays a crucial role in civil structural health monitoring, as it directly reflects the structural performance, safety, and serviceability. Over the past century, strain sensors have evolved from discrete sensors to distributed sensors, enabling global structural and integrity monitoring.
Strain is one of the most frequently monitored parameters in civil structural health monitoring (SHM) applications, and strain-based approaches were among the first to be explored and applied in SHM. There are multiple reasons why strain plays such an important role in SHM: strain is directly related to stress and deflection, which reflect structural performance, safety, and serviceability. Strain field anomalies are frequently indicators of unusual structural behaviors (e.g., damage or deterioration). Hence, the earliest concepts of strain sensing were explored in the mid-XIX century, the first effective strain sensor appeared in 1919, and the first onsite applications followed in the 1920 ' s. Today, one hundred years after the first developments, two generations of strain sensors, based on electrical and fiber-optic principles, firmly reached market maturity and established themselves as reliable tools applied in strain-based SHM. Along with sensor developments, the application methods evolved: the first generation of discrete sensors featured a short gauge length and provided a basis for local material monitoring; the second generation greatly extended the applicability and effectiveness of strain-based SHM by providing long gauge and one-dimensional (1D) distributed sensing, thus enabling global structural and integrity monitoring. Current research focuses on a third generation of strain sensors for two-dimensional (2D) distributed and quasi-distributed sensing, based on new advanced technologies. On the occasion of strain sensing centenary, and as an homage to all researchers, practitioners, and educators who contributed to strain-based SHM, this paper presents an overview of the first one hundred years of strain sensing technological progress, with the objective to identify relevant transformative milestones and indicate possible future research directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据