4.6 Article

Augmentation of Human Action Datasets with Suboptimal Warping and Representative Data Samples

期刊

SENSORS
卷 22, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/s22082947

关键词

data augmentation; skeletal data; human action recognition; time series classification

资金

  1. Regional Initiative of Excellence program [027/RID/2018/19, 11 999 900 PLN]

向作者/读者索取更多资源

This paper proposes a method to improve the effectiveness of artificial samples in time series generation by introducing constraints and conducts experiments on eight AR datasets. The results show the superiority of the introduced method over related approaches.
The popularity of action recognition (AR) approaches and the need for improvement of their effectiveness require the generation of artificial samples addressing the nonlinearity of the time-space, scarcity of data points, or their variability. Therefore, in this paper, a novel approach to time series augmentation is proposed. The method improves the suboptimal warped time series generator algorithm (SPAWNER), introducing constraints based on identified AR-related problems with generated data points. Specifically, the proposed ARSPAWNER removes potential new time series that do not offer additional knowledge to the examples of a class or are created far from the occupied area. The constraints are based on statistics of time series of AR classes and their representative examples inferred with dynamic time warping barycentric averaging technique (DBA). The extensive experiments performed on eight AR datasets using three popular time series classifiers reveal the superiority of the introduced method over related approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据