4.4 Article

Epitaxial growth of GaAsBi on thin step-graded InGaAs buffer layers

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6641/ac61ff

关键词

GaAsBi; molecular beam epitaxy; InGaAs buffer; valence band splitting

资金

  1. European Regional Development Fund [01.2.2-LMT-K-718-02-0020]
  2. Research Council of Lithuania (LMTLT)

向作者/读者索取更多资源

Molecular beam epitaxy growth and analysis of GaAsBi on compositional step-graded InGaAs buffer layers are presented in this study. The developed buffer is only 240 nm thick, exhibits very low surface roughness while reaching up to 0.46% lattice-mismatch with a GaAs substrate. Reciprocal-space mappings showed that 500 nm thick GaAsBi layers with 2.7%-5.3% Bi remain pseudomorphic with the InGaAs buffer, in contrast to GaAsBi grown on GaAs that were found to incur up to 50% lattice relaxation. CuPtB-type ordering and associated polarized photoluminescence were also found in the bismide layers grown on the InGaAs buffers. Optical anisotropy of a strain-free 2.7% Bi GaAsBi was further analysed by a suite of optical techniques indicating that the valence band splitting is similar to 40 meV. This study advances synthesis techniques of thick GaAsBi layers for optoelectronic device applications.
Molecular beam epitaxy growth and analysis of GaAsBi on compositional step-graded InGaAs buffer layers are presented in this study. The developed buffer is only 240 nm thick, exhibits very low surface roughness while reaching up to 0.46% lattice-mismatch with a GaAs substrate. Reciprocal-space mappings showed that 500 nm thick GaAsBi layers with 2.7%-5.3% Bi remain pseudomorphic with the InGaAs buffer, in contrast to GaAsBi grown on GaAs that were found to incur up to 50% lattice relaxation. CuPtB-type ordering and associated polarized photoluminescence were also found in the bismide layers grown on the InGaAs buffers. Optical anisotropy of a strain-free 2.7% Bi GaAsBi was further analysed by a suite of optical techniques indicating that the valence band splitting is similar to 40 meV. This study advances synthesis techniques of thick GaAsBi layers for optoelectronic device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据