4.7 Article

Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation

期刊

SCRIPTA MATERIALIA
卷 209, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2021.114364

关键词

Medium-entropy alloys; Chemical short-range order; Strengthening mechanism; Nanoindentation; Molecular dynamics

资金

  1. National Natural Science Foundation of China [52005186, 51725503]
  2. 111 Project
  3. Shanghai Sailing Program [20YF1409400]
  4. Innovation Program of Shanghai Municipal Education Commission [201901-07-00-02-E00 068]

向作者/读者索取更多资源

In this study, the enhancing effect of chemical short-range order (SRO) structure on CoCrNi medium-entropy alloy (MEA) was investigated using molecular dynamics simulations of nanoindentation. Results showed a quantitative correlation between SRO parameters and mechanical properties, with strength and hardness of the alloy increasing with higher SRO parameters until reaching a stable value. Additionally, an increase in average hardness and dislocation nucleation force were observed in models with intermediate and stable SRO structures compared to a random solid solution (RSS) state model.
The strengthening effect of chemical short-range order (SRO) structure in CoCrNi medium-entropy alloy (MEA) was investigated using molecular dynamics (MD) simulations of nanoindentation. The quantitative correlation between SRO parameters and mechanical properties was established. Results show that the strength and hardness of CoCrNi MEA increase with increasing chemical SRO parameters and reach a stable value with steady SRO structure. Compared with random solid solution (RSS) state model, the average hardness increases 8 . 1% in an intermediate SRO model and 13 . 7% in a stable SRO model. The dislocation nucleation force of SRO model is 55% larger than RSS model. Moreover, dislocation pinning induced by local Ni SRO structure, as well as the promoted unique dislocation interaction were observed during the nanoindentation process. Finally, results also show that as the temperature rises, the enhancement of hardness becomes more significant ( 11 . 4% at 70 K, 17 . 24% at 300 K, and 23 . 8% at 800 K). (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据