4.7 Article

Transcriptomics and proteomics revealed the psychrotolerant and antibiotic-resistant mechanisms of strain Pseudomonas psychrophila RNC-1 capable of assimilatory nitrate reduction and aerobic denitrification

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 820, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.153169

关键词

Sulfamethoxazole (SMX); Low temperature; Antibiotic resistance; Psychrotolerant mechanism

向作者/读者索取更多资源

This study systematically investigated the response of a psychrotolerant aerobic denitrifying bacteria to temperature and antibiotic stress. It was found that strain RNC-1 performed well at lower temperatures but had inhibited growth at higher temperatures. Proteomics analysis revealed the metabolic adaptations of RNC-1 under low temperature conditions. SMX at different concentrations had different effects on nitrate reduction. This study provides insights into the metabolic adaption of RNC-1 under different stress conditions, which is important for its application in nitrogen contaminated wastewater treatment processes.
Aerobic denitrification has been proved to be profoundly affected by temperature and antibiotics, but little is known about how aerobic denitrifiers respond to temperature and antibiotic stress. In this study, the nitrate reduction performance and the intracellular metabolism by a psychrotolerant aerobic denitrifying bacteria, named Pseudomonas psychrophila RNC-1, were systematically investigated at different temperatures (10 degrees C, 20 degrees C, 30 degrees C) and different sulfamethoxazole (SMX) concentrations (0 mg/L, 0.1 mg/L, 0.5 mg/L, 1.0 mg/L, and 5.0 mg/L). The results showed that strain RNC-1 performed satisfactory nitrate removal at 10 degrees C and 20 degrees C, but its growth was significantly inhibited at 30 degrees C. Nitrate removal by strain RNC-1 was slightly promoted in the presence of 0.5 mg/L SMX, whereas it was significantly suppressed with 5.0 mg/L SMX. Nitrogen balance analysis indicated that assimilatory nitrate reduction and dissimilatory aerobic denitrification jointly dominated in the nitrate removal process of strain RNC-1, in which the inhibition effected on assimilation process was much higher than that on the aerobic denitrification process under SMX exposure. Further transcriptomics and proteomics analysis revealed that the psychrotolerant mechanism of strain RNC-1 could be attributed to the up-regulation of RNA translation, energy metabolism, ABC transporters and the over-expression of cold shock proteins, while the down-regulation of oxidative phosphorylation pathway was the primary reason for the deteriorative cell growth at 30 degrees C. The promotion of nitrate reduction with 0.5 mg/L SMX was related to the up-regulation of amino acid metabolism pathways, while the down-regulation of folate cycle, glycolysis/gluconeogenesis and bacterial chemotaxis pathways were responsible for the inhibition effect at 5.0 mg/L SMX. This work provides a mechanistic understanding of the metabolic adaption of strain RNC-1 under different stress, which is of significance for its application in nitrogen contaminated wastewater treatment processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据