4.7 Article

The feasibility and mechanism of redox-active biochar for promoting anammox performance

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 814, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.152813

关键词

Anammox; Biochar; Extracellular electron transfer; Microbial community; Nitrogen removal

资金

  1. National Natural Science Foundation of China [51778446, 51978485, 52100058]
  2. China Postdoctoral Science Foundation [2021TQ0246, 2021M692422]

向作者/读者索取更多资源

This study demonstrates that biochar can enhance anammox activity and nitrogen removal performance, facilitating fast startup and improved nitrogen removal of anammox system.
Redox-active biochar has been regarded as an effective additive to promote heterotrophic denitrification, yet little is known about the feasibility of adding biochar for promoting anammox performance. In this study, we investigated the effects of different biochar doses (3-14 g/L; 1.5-7.1 g/g VSS) on anammox performance. Results showed that, in a short term (40 days), biochar could enhance anammox nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) by 0-18.0% and 0.2%-11.6%, respectively; this enhancement effect increased at 3-10 g biochar/L assays and reached a plateau at 10-14 g biochar/L assays. The optimal biochar dosage was identified to be 10 g/L (5.1 g/g VSS), with the NRR and NRE being 5.6%-18.0% and 4.0%-11.6% higher than those of the control, respectively. The highest specific anammox activity was simultaneously obtained at 10 g biochar/L assay, being 51% higher than that of the control. It revealed that biochar promoted the secretion of extracellular polymeric substances (increased by 30%-40% compared with that of the control) and increased the ratio of extracellular proteins to polysaccharides as well, directly enhancing the extracellular electron transfer capacity (ETC) of anammox biomass. The increased ETC of anammox biomass would further accelerate the metabolic activities of anammox bacteria, and promote the relative abundance of anammox bacteria, i.e., Ca. Brocadia was enriched by 5.8-12.6 folds than that of the control. These results demonstrate that biochar is feasible to enhance anammox activity and nitrogen removal performance, facilitating to a fast startup and enhanced nitrogen removal of anammox system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据