4.7 Article

Whole-cell biosensors for determination of bioavailable pollutants in soils and sediments: Theory and practice

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 811, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.152178

关键词

Bioreporter; Biotechnology; Pollutant and environmental risk assessment; Optical scattering and reflection; Bioaccessibility and speciation

资金

  1. National Natural Science Foundation of China [42107245]

向作者/读者索取更多资源

The study investigates the impact of soil/sediment on bioreporter signals, highlighting the importance of considering this when assessing pollutant bioavailability. Neglecting this effect can lead to significant errors in results. Recommendations for different experimental settings were provided to ensure accurate measurements.
The bioavailability of pollutants is a key factor affecting environmental risk. Whole-cell bioreporters are a demonstratedly effective tool for the investigation of pollutant bioavailability in water and soil/sediment. Unlike aqueous samples, transmittance of bioreporter optical signal is reduced in direct-contact assays with soil/sediment, which affects the accuracy of bioreporter-detected pollutant bioavailability. No studies have measured the magnitude and variability of soil/sediment effects on signal in direct-contact assays or how associated uncertainties influence results. In this study, we investigate the optical effects of soil/sediment particles in suspensions on bioreporter signal transmittance and quantify how variable these optical effects are from sample-to-sample. We find that neglecting bioreporter signal diminution by soil/sediment, as many studies do, can lead to order-of-magnitude errors in results, underestimating risk. Correction based on methods in ad hoc use (e.g. comparison to signal from non-inducible reporter or use of reference soil/sediment) are also problematic for some types of experiment, and could lead to errors in excess of 30%. Our findings have a sound basis in theory, and we provide recommendations concerning the most suitable type of approach to use for different experimental settings. Generally, if best accuracy is not needed to quantify bioavailability, for samples that have been ground, sieved, and are of reasonably uniform color, it may be possible to use a single or average correction factor, particularly for experiments performed at a single slurry concentration. For investigations studying bioavailability under varying solid-phase:water ratios (e.g., sorption/desorption), detailed compensation measurements are needed for independent variables, including each specific soil/sediment sample, slurry concentration, and in some cases bioreporter signal intensity. Our measurements and calculations indicate that best results are obtained when working in the region of ballistic photon transmittance. Findings herein will be useful in areas that require information on bioavailability, such as ecotoxicology and environmental risk assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据