4.7 Article

Effect of Fe(III)-modified montmorillonite on arsenic oxidation and anthracene transformation in soil

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 814, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.151939

关键词

Montmorillonite; Arsenic; Anthracene; Polycyclic aromatic hydrocarbons; Soil

资金

  1. National Key Research and Development Program of China [2018YFC1800702]
  2. National Natural Science Foundation of China [41977273]
  3. Natural Science Foundation of Tianjin City [19JCQNJC07700]
  4. Fundamental Research Funds for the Central Universities, Nankai University [040/63211071]

向作者/读者索取更多资源

Studies have shown that Fe(III)-modified montmorillonite has the potential to remediate soil contaminated by arsenic and poly cyclic aromatic hydrocarbons (PAHs) by promoting the oxidation of arsenite (As(III)) and transformation of anthracene.
Studies have shown that Fe(III)-modified montmorillonite can oxidize arsenite (As(III)) and also degrade anthracene. However, the application of Fe(III)-modified montmorillonite to remediate soil contaminated by arsenic and/or poly cyclic aromatic hydrocarbons (PAHs) has not been reported. In this study, we first investigated the transformation of arsenic and anthracene on the surface of Fe(III)-modified montmorillonite, and then added Fe(III)-modified montmorillonite to spiked soil to examine its effect on arsenic oxidation and anthracene transformation. The experiments included treatments with As(III) and anthracene added separately or combined (both at a rate of 100 mg/kg). Compared with Na-modified montmorillonite, Fe(III)-modified montmorillonite significantly promoted As(III) oxidation and anthracene transformation on its surface. After 15 days of incubation, the proportion of As(V) (As(V)/[As (III) + As(V)]) on Na-modified montmorillonite was approximately 60%,and the transformation extent of anthracene was 30%;on Fe(III)-modified montmorillonite, on the other hand, the proportion of As(V) was approximately 90%, and almost all anthracene was transformed. Adding 5% Fe(III)-modified montmorillonite to spiked soil also significantly enhanced As(III) oxidation and anthracene transformation. After 15 days, in the soil with added Fe(III)-modified montmorillonite, the proportion of As(V) was approximately 40%, the transformation extent of anthracene was 60%, and approximately half of the initial added anthracene was transformed to anthraquinone. By contrast, after 15 days, in the soil without added Fe(III)-modified montmorillonite, the proportion of As(V) was only approximately 20%, the transformation extent of anthracene was < 25%,and anthraquinone was not detected. In both the montmorillonite and soil systems, the transformation of arsenic and anthracene had little influence on each other. The results showed that Fe(III)-modified montmorillonite has the potential to remediate soil contaminated by arsenic and PAHs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据