4.7 Article

Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 814, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.152798

关键词

Soil remediation; Water management; Soil solution; Rice; Health risk

资金

  1. National Key Research and Development Program of China [2020YFC1806700]
  2. National Natural Science Foundation of China [41977143]

向作者/读者索取更多资源

This study investigated the simultaneous effects of biochar-supported nanoscale zero-valent iron (nZVI-BC) and water management on the decrease of Cd and As bioaccumulation in rice grain. The results showed that nZVI-BC combined with alternate wetting and drying (AWD) management can simultaneously decrease the bioaccumulation of Cd and As in rice grains. The reduction of soil Cd and As availability and the formation of iron plaque dominated the decrease of Cd and As uptake by rice grains.
Cadmium (Cd) and Arsenic (As) in rice grains are a primary exposure source for human beings. However, the simultaneous stabilization of Cd and As in soil becomes difficult due to the opposite properties of those. In this study, we investigated the simultaneous effects of biochar-supported nanoscale zero-valent iron (nZVI-BC) and water management on the decrease of Cd and As bioaccumulation in rice grain. Compared to the control, 0.25-1.00% nZVI-BC coupled with alternate wetting and drying (AWD) management simultaneously decreased the bioaccumulation of Cd and As in rice grains by 15.85-69.16% and 23.06-59.45%, respectively. The cancer risk associated with rice consumption effectively reduced by 15.60-52.41% after the application of nZVI-BC, and the lowest cancer risk was detected in 1.00% nZVI-BC under AWD management. Furthermore, rice cultivated under AWD management had a lower total cancer risk than that cultivated under continuous flooded (CF) management with the same amendment of type and dose. The reduction of soil Cd and As availability and the formation of iron plaque dominated the decrease of Cd and As uptake by rice grains. The elevated soil pH was responsible for Cd adsorption, and the dominant mechanism for As immobilization was the formation of complexes. The iron plaque was double-edged, promoting and inhibiting Cd uptake by rice, wherein the inhibition was predominant under aerobic conditions. In addition, iron plaque was a barrier to preventing the As accumulation by rice, a larger amount of As was immobilized on the iron plaque with nZVI-BC treatment. This study sheds new insights on the simultaneous remediation of Cd and As co-contaminated paddy fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据