4.7 Review

A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 813, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.152529

关键词

Antibiotics; Fluoroquinolones; Degradation; Adsorption; Advanced oxidation process (AOP)

向作者/读者索取更多资源

The review focuses on the removal techniques of Levofloxacin from wastewater, particularly on adsorption and photocatalytic degradation methods. It is found that photocatalytic degradation is the most effective method, but the toxicity of degradation products needs further monitoring. Biological degradation may be the most environmentally friendly method, but research in this area is limited. The review suggests the potential of hybrid techniques to improve the efficiency of Levofloxacin removal.
Among various classes of antibiotics, fluoroquinolones, especially Levofloxacin, are being administered on a large scale for numerous purposes. Being highly stable to be completely metabolized, residual quantities of Levofloxacin get accumulated into the food chain proving a great global threat for aquatic as well as terrestrial ecosystems. Various removal techniques including both conventional and advanced methods have been reported for this purpose. This review is a novel attempt to make a critical analysis of the recent advances made exclusively toward the sequestration of Levofloxacin from wastewater through an extensive literature survey (2015-2021). Adsorption and advanced oxidation processes especially photocatalytic degradation are the most tested techniques in which assorted nanomaterials play a significant role. Several photocatalysts exhibited up to 100% degradation of LEV which makes photocatalytic degradation the best method among other tested methods. However, the degraded products need to be further monitored in terms of their toxicity. Biological degradation may prove to be the most environment-friendly with the least toxicity, unfortunately, not much research is reported in the field. With these key findings and knowledge gaps, authors suggest the scope of hybrid techniques, which have been experimented on other antibiotics. These can potentially minimize the disadvantages of the individual techniques concurrently improving the efficiency of LEV removal. Besides, techniques like column adsorption, membrane treatment, and ozonation, being least reported, reserve good perspectives for future research. With these implications, the review will certainly serve as a breakthrough for researchers working in this field to aid their future findings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据