4.7 Review

Thermal stress affects bioturbators' burrowing behavior: A mesocosm experiment on common cockles (Cerastoderma edule)

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 824, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.153621

关键词

Marine heatwaves; Bioturbators; Tidal flats; Tidal water pools; Surface sediment temperature

资金

  1. China Scholarship Council (CSC) [201804910683]

向作者/读者索取更多资源

The intensity of marine heatwaves is increasing, affecting bioturbating behavior and the deposition-erosion balance in intertidal areas. Small-scale topographic features can create tidal pools, potentially serving as refuge environments during heatwaves.
The intensity of marine heatwaves is increasing due to climate change. Heatwaves may affect macroinvertebrates' bioturbating behavior in intertidal areas, thereby altering the deposition-erosion balance at tidal flats. Moreover, small-scale topographic features on tidal flats can create tidal pools during the low tide, thus changing the heat capacity of tidal flats. These pools could then potentially operate as refuge environments during marine heatwaves. We studied behavior responses to heat waves using the well-known bioturbating cockle Cerastoderma edule as a model species. Different temperature regimes (i.e., fluctuating between 20 and 40 degrees C) and micro-topographies (i.e., presence vs. absence of tidal water pools) were mimicked in a mesocosm experiment with regular tidal regimes. Our results demonstrate that behavioral responses to heat stress strongly depend on the site-specific morphological features. Cockles covered by shallow water pools moved up when exposed to thermal stress, while burrowing deeper into the sediment in the absence of water pools. But in both cases, their migratory behavior increased under heat stress compared to regular ambient treatments. Moreover, long-term cumulative heat stress increased cockles' respiration rates and decreased their health conditions, causing mass mortality after four weeks of gradually increasing heat exposure. Overall, the present findings provide the first insights into how bioturbating behavior on tidal flats may change in response to global warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据