4.7 Review

Sorption, separation and recycling of ammonium in agricultural soils: A viable application for magnetic biochar?

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 812, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.151440

关键词

Magnetic biochar; Circular economy; Pollution; Remediation; Nitrogen sorption; Recycling

资金

  1. Biotechnology and Biological Sciences Research Council Doctoral Training Partnership [BB/M008770/1]

向作者/读者索取更多资源

Recent research on magnetisation of biochar has opened new opportunities in environmental remediation by simplifying its separation process and addressing waste management and nitrogen pollution. However, further studies are needed to understand the impacts of biochar on soil chemistry and biology to protect and support soil ecosystems.
Recent research on the magnetisation of biochar, a carbon-based material that can be used as a sorbent, has opened novel opportunities in the field of environmental remediation, as incorporating magnetic particles into biochar can simplify subsequent separation. This could offer a sustainable circular economy-based solution in two areas of waste management; firstly, pyrolysis of agricultural waste for magnetic biochar synthesis could reduce greenhouse gas emissions derived from traditional agricultural waste processing, such as landfill and incineration, while secondly, application of magnetic biochar to remove excess nitrogen from soils (made possible through magnetic separation) could provide opportunities for this pollutant to be used as a recycled fertiliser. While sorption of pollutants by magnetic biochar has been researched in wastewater, few studies have investigated magnetic biochar use in polluted soils. Nitrogen pollution (e.g. NH4+), stemming from agricultural fertiliser management, is a major environmental and economic issue that could be significantly reduced before losses from soils occur. This review demonstrates that the use of magnetic biochar tailored to NH4+ adsorption has potential to remove (and recycle for reuse) excess nitrogen from soils. Analysis of research into recovery of NH4+ by sorption/desorption, biochar magnetisation and biochar-soil interactions, suggests that this is a promising application, but a more cohesive, interdisciplinary approach is called for to elucidate its feasibility. Furthermore, research shows variable impacts of biochar upon soil chemistry and biology, such as pH and microbial diversity. Considering wide concerns surrounding global biodiversity depletion, a more comprehensive understanding of biochar-soil dynamics is required to protect and support soil ecosystems. Finally, addressing research gaps, such as optimisation and scaling-up of magnetic biochar synthesis, would benefit from systems thinking approaches, ensuring the many complex considerations across science, industry, policy and economics are connected by circular-economy principles. Crown Copyright (C) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据