4.7 Article

Cyclic enrichment of chromium based on valence state transformation in metal-free photocatalytic reductive imprinted composite hydrogel

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 839, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.156367

关键词

Ion-imprinting polymer; Cr (VI); Polypyrrole; Photo-reduction

资金

  1. Natural Science Basic Research Program of Shaanxi [2020JM-226]
  2. Key R & D Program of Shaanxi Province [2021SF-443]
  3. Fundamental Research Funds for the Central Universi-ties of China [310829161015, 300102292903]

向作者/读者索取更多资源

An ion imprinting material, Gel/CS/PPy, was synthesized, and a cyclic enrichment process including adsorption-photoreduction-fixation-readsorption of Cr(VI) was established. The results showed that Gel/CS/PPy has good adsorption capacity for Cr(VI) and excellent photocatalytic ability to reduce Cr(VI) to Cr(III).
Cr (VI) exists in anion form and can be reduced to positive charged Cr (III) under certain conditions. Can positive charged Cr (III) be continually used for absorbing Cr (VI) to achieve cyclic accumulation of chromium? In this paper, an ion imprinting material for adsorption of Cr (VI) was prepared by dispersing polypyrrole (PPy) in a gelatin/chitosan (Gel/CS) hydrogel network, named Gel/CS/PPy. Based on the conversion of Cr (VI) to Cr (III), a cyclic enrichment process including adsorption-photoreduction-fixation-readsorption of Cr (VI) was established in Gel/CS/ PPy hydrogel. The composition and structure of the Gel/CS/PPy were analyzed by scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric (TGA), texture analyzer (Universal TA), zeta potential and ultraviolet-visible-near infrared spectra (UV-vis-NIR). The conversion of Cr (VI) and Cr (III) and its promoting effect on readsorption were verified by XPS. The results showed that Gel/CS/PPy has good adsorption capacity for Cr (VI) and excellent photocatalytic ability to reduce Cr (VI) to Cr (III). Cr (III)-loaded Gel/CS/PPy can be further used to adsorb Cr (VI) and showed good adsorption efficiency even after four cycles. The optimal operating condition for Cr (VI) adsorption is pH = 3; 2 g/L dose of Gel/CS/PPy; and the adsorption capacity of Cr (VI) was about 106.8 mg/g after six adsorption cycles. Since Gel/CS/PPy is composed of organic components, high purity chromium can be recovered by simple calcination method later. Therefore, the synthesized Gel/CS/PPy has great potential in the practical application of low concentration Cr (VI) treatment in water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据