4.7 Article

Interactive impacts of climate change and agricultural management on soil organic carbon sequestration potential of cropland in China over the coming decades

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 817, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.153018

关键词

Climate change mitigation; Carbon neutrality; Climate-smart agriculture; Soil carbon; Soil management

资金

  1. National Natural Science Foundation of China [31761143006, 41571493]
  2. Academy of Finland [316215]
  3. Academy of Finland (AKA) [316215, 316215] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

This study used the Rothamsted Carbon model to investigate the spatiotemporal pattern of SOC sequestration in China's cropland and explored the interactive impacts of climate change and agricultural management. The results suggest that a significant increase in C input is needed to achieve the promise of the '4 per 1000' initiative.
Cropland plays an important role in Soil Organic Carbon (SOC) sequestration. Although the SOC stock and its dynamic in the past decades have been extensively investigated, the information as to where, how much, and how SOC could be potentially sequestered in the coming decades has rarely been available. Here, the Rothamsted Carbon model was applied to investigate the spatiotemporal pattern of SOC sequestration potential for China's cropland in 2021-2040 at 1 km resolution, as well as the interactive impacts of climate change and agricultural management on SOC sequestration. Under the combined impacts of climate change and C input, the SOC sequestration of China's cropland in 2021-2040 would be about 0.56 Mg C ha-1 (0.06% yr-1), 1.33 Mg C ha-1 (0.15% yr-1), 2.10 Mg C ha-1 (0.24% yr-1), and 3.65 Mg C ha-1 (0.41% yr-1), with no increase, 5%, 10%,and 20% increase of C input, respectively. Therefore, a >20% increase in C input would be necessary to realize the promise of the '4 per 1000' initiative. Climate change would decrease SOC sequestration by 26.6-27.6 Tg yr-1 (or 60.4-62.7%). An increase of C input by 0%, 5%, 10%,and 20% relative to business as usual (BAU) would increase SOC sequestration by 4.8 (or 10.8%), 6.6 (or 14.9%), 13.1 (or 29.8%), and 26.2 (or 59.6%) Tg yr-1, respectively. The contributions of temperature, precipitation, and C input to SOC sequestration will be averagely 18.6%, 22.4%, and 59.0%, respectively. Our findings quantify the SOC sequestration in 2021-2040 at a high spatial resolution under the interactive impacts of climate change and agricultural management, which help to identify potential foci and develop region-specific measures to increase SOC sequestration efficiently.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据