4.7 Article

A highly active copper-nanoparticle-based nitrate reduction electrocatalyst prepared by in situ electrodeposition and annealing

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 827, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.154349

关键词

Nitrate removal; Electrocatalysis; Copper; Electrodeposition; Annealing

资金

  1. National Natural Science Foundation of China [51908001]

向作者/读者索取更多资源

This study reports a novel Cu-based electrode (IE-Cu-400) for the electrochemical reduction of nitrate (NO3-) with improved activity and selectivity compared to traditional Cu-based electrodes. The enhanced performance of IE-Cu-400 is attributed to its smaller particles, high oxidation state of copper (Cu2+ in CuO), increased number of active sites, improved adsorption and reduction ability for NO2-, increased surface area, and high density of grain boundaries. IE-Cu-400 also demonstrates high stability for the electrochemical reduction of nitrate.
In recent years, copper-based electrodes have attracted intense attention for the electrochemical reduction of nitrate (NO3-), the so-called ECRN. However, these electrodes suffer from low activity and selectivity. Herein, we report a novel Cu-based electrode (IE-Cu-400) for the ECRN fabricated by loading Cu-based nanoparticles onto graphite felt using in situ electrodeposition followed by annealing. Compared with traditional Cu-based electrodes, the IE-Cu-400 is comprised of smaller particles and the copper is present in a high oxidation state (Cu2+ in CuO). During operation, the CuO is converted to Cu, which is the active ECRN species. In addition, an increased surface area and high density of grain boundaries resulting from the reduction of CuO were observed for IE-Cu-400. This resulted in a 3.38-fold increase in the NO3- removal rate and a 1.36-fold increase in NH4+ selectivity. Further analyses revealed that the enhanced ECRN performance of IE-Cu-400 is linked to its increased number of active sites, as well as its improved adsorption and reduction ability for NO2-. Moreover, IE-Cu-400 displays high stability for the ECRN. Finally, the produced NH4+ was effectively oxidised to N-2 with approximately 100% selectivity via chlorination. Hence, the two-stage treatment strategy (i.e. ECRN by IE-Cu-400 + chlorination treatment) presented here shows great potential for the complete electrocatalytic denitrification of water. Further, this work highlights the beneficial effect of decreasing the particle size and controlling the surface oxidation of Cu-based catalysts simultaneously for enhancing the ECRN and offers new suggestions for the design of high-performance electrode materials for the ECRN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据