4.7 Article

Borohydride and metallic copper as a robust dehalogenation system: Selectivity assessment and system optimization

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 810, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.152065

关键词

Copper catalysts; Borohydride; Halogenated organic compounds; Reduction processes; Product selectivity patterns

资金

  1. Deutscher Akademischer Austauschdienst (DAAD)
  2. Helmholtz Centre for Environmental Research (UFZ), Leipzig

向作者/读者索取更多资源

Cu with borohydride as reductant shows promising potential in hydrodechlorination of halogenated organic compounds, with product selectivities being substrate-specific rather than reductant-specific. The process can achieve chlorine removal through stepwise hydrogenolysis or alpha-elimination for saturated aliphatic HOCs.
Hydrodechlorination (HDC) using noble-metal catalysts in the presence of H-donors is a promising tool for the treatment of water contaminated by halogenated organic compounds (HOCs). Cu is an attractive alternative catalyst to noble metals since it is cheaper than Pd, Rh, or Pt and more stable against deactivation. Cu with borohydride (BH4-) as reductant (copper-borohydride reduction system; CBRS) was applied here for the treatment of saturated aliphatic HOCs. The HDC ability of CBRS was evaluated based upon product selectivities during reduction of CCl3-R compounds (R = H, F, Cl, Br, and CH3). For CHCl3, CH2Cl2, and CHCl2-CH3, the dechlorination reaction proceeds predominantly via alpha-elimination with initial product selectivities to CH4 and C2H6 of 84-85 mol-% and 70-72 mol-%. For CCl4, CBrCl3, CFCl3, and CCl3-CH3, stepwise hydrogenolysis dominates. CH2Cl-R compounds are formed as recalcitrant intermediates with initial selectivities of 50-72 mol-%, whereas CH4 and C2H6 are minor products with 16-35 mol-% and 30-35 mol-%. The effect of reaction conditions on product selectivities were investigated for CHCl3 as target. Solution composition, variation of reducing agents (BH4-, H* from H2) and increase of electron pressure (electric potential at Cu electrode and Fe0 as support) did not have marked influence on the selectivities (ratio of CH4 : CH2Cl2). Product selectivities for reduction of CCl3-R compounds were found to be substrate-specific rather than reductantspecific. Since the formation of halogenated by-products could not be avoided, transformation via a second reduction step was optimized by higher catalyst dose, addition of Ag, and vitamin B12 to the CBRS. Comparison between Pd and Cu based on costs, catalyst activities, selectivities, metal stability, and fate of halogenated by-products shows that the CBRS is a potent alternative to conventional HDC catalysts and can be recommended as 'agent of choice' for treatment of alpha-substituted haloalkanes in heavily contaminated waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据