4.7 Article

Changes in soil total, microbial and enzymatic C-N-P contents and stoichiometry with depth and latitude in forest ecosystems

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 816, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.151583

关键词

Microbial biomass; Extracellular enzyme activity; Latitudinal gradient; Depth pattern; Nutrient limitation

资金

  1. National Natural Science Founda-tion of China [31988102]
  2. Hainan University

向作者/读者索取更多资源

This study explores the vertical and latitudinal patterns of soil microbial and enzymatic C-N-P contents and ratios in eight forest ecosystems in eastern China. The results show significant variations in C-N-P contents and stoichiometry with depth and latitude. Additionally, the correlations between C-N-P contents and latitude are stronger in surface soils compared to deep soils.
Soil microorganisms and their extracellular enzymes are key factors determining the biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P). Relevant studies mainly focus on surface soils (0-20 cm), while deep soils (>20 cm) are often neglected, let alone comparing multiple ecosystems simultaneously. In this study, we studied the latitudinal (19-48 degrees N) and vertical (0-100 cm) patterns of soil total, microbial and enzymatic C-N-P contents and ratios (stoichiometry) in eight temperate, subtropical and tropical forest ecosystems in eastern China. We found that the C-N-P contents and their stoichiometry in soil, microbial biomass and extra cellular enzymes all varied significantly with depth and latitude. Soil total C, N and P declined with depth, as did microbial biomass and enzyme activity, while microbial and enzymatic C:N ratios showed increasing or no trend with increasing soil depth. Moreover, soil total and microbial C-N-P contents in surface soils (0-20 cm) showed positive correlations with increasing latitude, and such correlations tended to be weaker or disappeared in deep soils (>20 cm). Overall, changes in total, microbial and enzymatic C-N-P contents and ratios among latitudes suggested a shift from relative N limitation in the north to relative P limitation in the south. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据