4.7 Article

Differentiating metabolomic responses of amphibians to multiple stressors

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 838, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155666

关键词

Amphibians; Pesticide; Predator; Metabolomics; Corticosterone

资金

  1. Research Program at the Office of Re-search Development, U.S. Environmental Protection Agency [DW8992298301]
  2. U.S. Environmental Protection Agency [DW8992298301]

向作者/读者索取更多资源

One of the biggest challenges in ecological risk assessment is determining the impact of multiple stressors on individual organisms and populations in real world scenarios. Metabolomic profiling provides an opportunity to address these uncertainties and accurately classify the effects of different stressors on the metabolism of non-target organisms. This study demonstrated that exposure to the insecticide carbaryl, predation stress, and a combination of both can significantly affect the metabolome and biochemical fluxes in post-metamorphosis southern leopard frogs.
One of the biggest challenges in ecological risk assessment is determining the impact of multiple stressors on individual organisms and populations in real world scenarios. Frequently, data derived from laboratory studies of single stressors are used to estimate risk parameters and do not adequately address scenarios where other stressors exist. Emerging 'omic technologies, notably metabolomics, provide an opportunity to address the uncertainties surrounding ecological risk assessment of multiple stressors. The objective of this study was to use metabolomic profiling to investigate the effect of multiple stressors on amphibian metamorphs. We exposed post-metamorphosis (180 days) southern leopard frogs (Lithobates sphenocephala) to the insecticide carbaryl (480 mu g/L), predation stress, and a combined pesticide and predation stress treatment. Corticosterone analysis revealed mild support for an induction in response to predation stress alone but strongly suggests that carbaryl exposure, alone or in combination with predation cues, can significantly elevate this known biomarker in amphibians. Metabolomics analysis accurately classed, based on relative nearness, carbaryl and predation induced changes in the hepatic metabolome and biochemical fluxes appear to be associated with a similar biological response. Support vector machine analysis with recursive feature elimination of the acquired metabolomic spectra demonstrated 85-96% classification accuracy among control and all treatment groups when using the top 75 ranked retention time bins. Biochemical fluxes observed in the groups exposed to carbaryl, predation, and the combined treatment include amino acids, sugar derivatives, and purine nucleotides. Ultimately, this methodology could be used to interpret short-term toxicity assays and the presence of environmental stressors to overall metabolomic effects in non-target organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据