4.7 Article

Surrogate-based follow-up of activated carbon adsorption preceded by ozonation for removal of bulk organics and micropollutants from landfill leachate

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 820, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.153349

关键词

Adsorption; Land fill leachate; Micropollutants; Ozonation; Surrogate models

资金

  1. VITO-Vlakwa
  2. Province of West-Flanders (Belgium)
  3. China Scholarship Council (CSC)

向作者/读者索取更多资源

This study investigates the impact of preceding ozonation on the adsorption of COD and MPs in leachate, and evaluates a new surrogate-based model for predicting MPs breakthrough. The results show that ozone reduces the adsorption affinity of COD and increases the adsorption of MPs in leachate. Furthermore, the developed model demonstrates good applicability for predicting MPs breakthrough.
Although combined ozonation with activated carbon (AC) adsorption is a promising technique for leachate treatment, little is known about how ozone-induced changes in leachate characteristics affect the organics adsorption, especially in view of emerging micropollutants (MPs) removal. Furthermore, the online monitoring of MPs is challenging but desirable for efficient treatment operation. This study investigates how preceding ozonation impacts the adsorption of bulk organics (expressed as chemical oxygen demand (COD)) and ozone-recalcitrant MPs, i.e., primidone, atrazine and alachlor, in leachate using batch and column adsorption tests. Additionally, a new surrogate-based model was evaluated for predicting MPs breakthrough. Batch tests revealed that ozonation results in a decreasing apparent affin-ity of COD towards AC, but the non-adsorbable part did not obviously change. The adsorption of MPs in ozonated leachate was (1-41%) higher than that in non-ozonated leachate, especially for the more hydrophobic alachlor and atrazine, due to a reduced sites competition from bulk organics. Column adsorption showed that ozonation delayed COD and MPs breakthrough due to the reduced COD loading and sites competition, respectively. An increased empty bed contact time (EBCT, 10-40 min) led to an increased COD uptake by a factor of 3.0-3.2 for ozonated and non-ozonated leachates, while MPs adsorption also increased, suggesting that pore blockage rather than site competition could be the dominant inhibitory effect. The data from column adsorption demonstrate the applicability of developed surrogate-based model for predicting MPs breakthrough. Particularly, the fitting parameters were not affected by change of leachate characteristics, while they were impacted by change of EBCT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据