4.8 Review

Tunable structured light with flat optics

期刊

SCIENCE
卷 376, 期 6591, 页码 367-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.abi6860

关键词

-

资金

  1. National Science Foundation [ECCS-2025158]
  2. Office of Naval Research [N00014-20-1-2450]
  3. Air Force Office of Scientific Research [FA95550-19-1-0135]
  4. Natural Sciences and Engineering Research Council of Canada [PDF-533013-2019]

向作者/读者索取更多资源

Flat optics, with its subwavelength resolution, ease of integration, and compact design, has become a crucial player in the field of structured light and its applications. The new generation of meta-optics can shape the light and dark features of an optical field with unprecedented complexity and multifunctionality. These advancements have the potential to revolutionize camera systems, microscopes, holography, portable devices, and wearable technology, and may also open up new possibilities in optical communications and sensing.
Flat optics has emerged as a key player in the area of structured light and its applications, owing to its subwavelength resolution, ease of integration, and compact footprint. Although its first generation has revolutionized conventional lenses and enabled anomalous refraction, new classes of meta-optics can now shape light and dark features of an optical field with an unprecedented level of complexity and multifunctionality. Here, we review these efforts with a focus on metasurfaces that use different properties of input light-angle of incidence and direction, polarization, phase distribution, wavelength, and nonlinear behavior-as optical knobs for tuning the output response. We discuss ongoing advances in this area as well as future challenges and prospects. These recent developments indicate that optically tunable flat optics is poised to advance adaptive camera systems, microscopes, holograms, and portable and wearable devices and may suggest new possibilities in optical communications and sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据