4.6 Article

Contaminated consignment simulation to support risk-based inspection design

期刊

RISK ANALYSIS
卷 43, 期 4, 页码 709-723

出版社

WILEY
DOI: 10.1111/risa.13943

关键词

biological invasions; phytosanitary inspections; simulation

向作者/读者索取更多资源

Invasive nonnative plant pests can cause extensive environmental and economic damage and are difficult to eradicate. Phytosanitary inspections are critical for preventing biological invasions, but the massive volume of imported goods necessitates a targeted, risk-based strategy. A new simulator tool helps quantify undetected pests and design effective inspection strategies.
Invasive nonnative plant pests can cause extensive environmental and economic damage and are very difficult to eradicate once established. Phytosanitary inspections that aim to prevent biological invasions by limiting movement of nonnative plant pests across borders are a critical component of the biosecurity continuum. Inspections can also provide valuable information about when and where plant pests are crossing national boundaries. However, only a limited portion of the massive volume of goods imported daily can be inspected, necessitating a highly targeted, risk-based strategy. Furthermore, since inspections must prioritize detection and efficiency, their outcomes generally cannot be used to make inferences about risk for cargo pathways as a whole. Phytosanitary agencies need better tools for quantifying pests going undetected and designing risk-based inspection strategies appropriate for changing operational conditions. In this research, we present PoPS (Pest or Pathogen Spread) Border, an open-source consignment inspection simulator for measuring inspection outcomes under various cargo contamination scenarios to support recommendations for inspection protocols and estimate pest slippage rates. We used the tool to estimate contamination rates of historical interception data, quantify tradeoffs in effectiveness and workload for inspection strategies, and identify vulnerabilities in sampling protocols as changes in cargo configurations and contamination occur. These use cases demonstrate how this simulation approach permits testing inspection strategies and measuring quantities that would otherwise be impossible in a field-based setting. This work represents the first steps toward a decision support tool for creating dynamic inspection protocols that respond to changes in available resources, workload, and commerce trends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据