4.7 Article

A two-way coupling method for the study of aeroelastic effects in large wind turbines

期刊

RENEWABLE ENERGY
卷 190, 期 -, 页码 971-992

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2022.03.158

关键词

Wind energy; Aeroelasticity; Large-eddy simulation; Actuator line model; Modal structural dynamics; CFD-CSD method

向作者/读者索取更多资源

The study suggests that one-way coupled simulations tend to overestimate power production and structural oscillations in wind turbines. Flapwise blade vibration induces aerodynamic damping in the structural motion, while torsional deformation reduces power without introducing significant dynamical effects.
The relevant size of state-of-the-art wind turbines suggests a significant Fluid-Structure Interaction. Given the difficulties to measure the phenomena occurring, researchers advocate high-fidelity numerical models exploiting Computational Fluid and Structural Dynamics. This work presents a novel aeroelastic model for wind turbines combining our Large-Eddy Simulation fluid solver with a modal beam-like structural solver. A loose algorithm couples the Actuator Line Model, which represents the blades in the fluid domain, with the structural model, which represents the flexural and torsional deformations. For the NREL 5 MW wind turbine, we compare the results of three sets of simulations. Firstly, we consider one-way coupled simulations where only the fluid solver provides the structural one with the aerodynamic loads; then, we consider two-way coupled simulations where the structural feedback to the fluid solver is made of the bending deformation velocities only; finally, we add to the feedback the torsional deformation. The comparison suggests that one-way coupled simulations tend to overpredict the power production and the structural oscillations. The flapwise blades vibration induces a significant aerodynamic damping in the structural motion, while the nose-down torsion reduces the mean aerodynamic forces, and hence the power, yet without introducing a marked dynamical effect. (c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据