4.8 Review

Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2022.112131

关键词

Carbonmaterial/MnO2; Multi-composite electrode materials; Active site; Multi-dimension; Conductive skeleton; Electrochemical energy storage

资金

  1. National Natural Science Foundation of China [U20A20302]
  2. Innovative group pro-jects in Hebei Province [E2021202006]
  3. Science and Technology Key Project of Tianjin [19ZXSZSN00050, 19ZXSZSN00070]
  4. Key R & D projects in Hebei Province [20373701D]
  5. Project of great transformation of scientific and technical research in Hebei Province [21283701Z]

向作者/读者索取更多资源

Supercapacitors, a new type of energy storage device, have attracted widespread attention in the field of energy and the environment. Composites based on carbon material/MnO2 have become a hotspot in electrode materials for supercapacitors, and the introduction of a third material can further enhance the properties of the composites. This paper provides a review and analysis of binary and ternary composites of carbon material/MnO2 and their applications, highlighting the need for a superposition of different dimensions and an optimum capacitive balance index for excellent performance. The paper also predicts the future trend of biomass activated carbon/low-dimensional carbon material (1D,2D)/MnO2 and new technologies such as graft oxidation and 3D printing. Finally, the challenges and development trends of multi-composites based on carbon material/MnO2 are summarized and predicted.
In the current background of energy and the environment, as a new type of energy storage device between secondary batteries and capacitors, supercapacitors have received widespread attention, and electrode materials are the core of preparing high-performance supercapacitors. The composites based on carbon material/MnO2 have become a hotspot in the field of electrode materials for supercapacitors. In addition, the properties of the composites can be further enhanced by introducing a third material such as transition metal oxides, conductive polymers, and carbon materials. This paper presents a review based on the binary and ternary composites of carbon materials/MnO2 and their applications, the mechanism of various materials and their practical appli-cations in supercapacitors are introduced in detail. On this basis, the characteristics of each composite are analyzed deeply and it is pointed out that a superposition of different dimensions and an optimum capacitive balance index are required for excellent performance. It also predicts that biomass activated carbon/low-dimensional carbon material (1D, 2D)/MnO2 will be one of the most promising materials, as well as graft oxidation, 3D printing and other new technologies are the future trend of the process. Finally, the challenges and development trends of multi-composite based on carbon material/MnO2 are summarized and predicted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据